Search Results
You are looking at 11 - 20 of 39 items for
- Author or Editor: Joyce G. Latimer x
The growth of `Mirage' and `StarBrite' watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] transplants were evaluated in TODD 125, 100A, 150, 175, and 200 flats with root cell volumes of 18, 26, 36, 46, and 80 cm3, respectively. The effects of rooting volume restriction (RVR) on the number of leaves developed, leaf expansion, and shoot and root dry weight gain increased with time measured at 5, 10, 15, or 20 days after seedling emergence (DAE) for `Mirage' or 4, 8, 12, or 16 DAE for `StarBrite'. Generally, the greatest effect of RVR occurred between 10 and 15 DAE for `Mirage' and 8 and 12 DAE for `StarBrite' for most measurements. Root: shoot dry weight ratios generally were similar among the cell volumes. In a 1993 field test with `StarBrite' grown in the previously described flats, transplants from the TODD 125s produced the least growth and the poorest yield in terms of fruit per plant, total number of marketable fruit, and total yield. Transplants from TODD 200s produced a higher total yield than plants from other cell volumes.
Two weeks after planting, plugs of New Guinea impatiens (Impatiens × hybrida), marigold (Tagetes erecta), or ageratum (Ageratum Houstonianum) were subjected to eight conditioning treatments: untreated, low N (50 ppm), high N (500 ppm), ebb/flow watering, drought, brushing (40 strokes twice daily), daminozide (5000 ppm), or paclobutrazol (45 ppm). Fertilizers were applied three times per week at 250 ppm N for all plants not treated with high or low N. Five adult twospotted spider mites were placed on each plant 1 week after treatment. New Guinea impatiens height was reduced by low N, brushing, or paclobutrazol at 4 weeks after treatment. Spider mite populations were reduced only by brushing. Marigold height was reduced by low N, drought, or brushing, but spider mite counts were reduced by brushing or paclobutrazol. Height of ageratum was reduced by low N, daminozide, or paclobutrazol, but spider mite counts were reduced by ebb/flow or brushing at 4 weeks after treatment.
Increasing fertilizer levels may reduce production time but can lead to excessive growth of herbaceous perennials, requiring the application of plant growth regulators (PGRs). This study investigated the effects of ascending fertilizer rates in conjunction with two rates of uniconazole and a control. Rooted liners of Artemisia arborescens L. `Powis Castle', Artemisia vulgaris L. `Oriental Limelight, Astilbe chinensis (Maxim.) Franch. `Pumila', Filipendula rubra (Hill) Robinson `Venusta' and Perovskia atriplicifolia Benth. were potted with controlled-release fertilizer (15N-3.9P-10K) incorporated at 2.4, 4.72, and 7.11 kg·m-3. A single foliar spray application of uniconazole was applied two weeks after transplanting at a volume of 210 mL·m-3 and two rates from 15 to 60 mg·L-1 plus a control (species-dependent). Plant height and width were measured at 2,4,6, and 8 weeks after treatment (WAT). No interactions between fertilizer rate and uniconazole were observed. Main effects varied by species. The application of uniconazole controlled height and width of Artemisia `Oriental Limelight' and Astilbe for the duration of the experiment. Height, width, and dry weight of Artemisia `Oriental Limelight' increased with ascending fertilizer rates while Astilbe was not affected. Growth of Filipendula and Artemisia `Powis Castle' was unresponsive to uniconazole, though dry weight was reduced for both at the lowest fertilizer rate. Uniconazole provided height control of Perovskia, but the effect did not persist beyond 6 WAT. Ascending fertilizer rates increased Perovskia dry weight but not height.
Seeds of `Mirage' and `Starbrite' watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] were sown in TODD planter flats with root cell volumes of 20, 28, 39, 49, or 83 cm3. Plants were harvested for growth measurement at 5, 10, 15 and 20 days after seeding (DAS). Data were regressed over root cell volume for each harvest date. The effect of root volume restriction (RVR) was determined by comparing the slopes of the regression lines. All measurements of growth increased with increasing root volume at each harvest date. Generally, the slopes of all regression lines increased with each successive harvest, i.e., plant growth was limited more in the smaller root volumes than in larger volumes at each successive harvest. The greatest increase in the slopes of the regression lines occurred between 10 and 15 DAS for most measurements of both cultivars. This indicates that RVR became significantly more limiting to seedling growth after 10 DAS which corresponded to the second to third true-leaf stage.
`Sunny' tomato (Lycopersicon esculentum Mill.), `Black Beauty' eggplant (Solanum melongena var. esculentum L. Nees.), or `Sugar Baby' watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] were nontreated, subjected to brushing (20 strokes twice daily) or drought conditioning (2 hours daily wilt), or maintained undisturbed using ebb-and-flow irrigation. One week after brushing or drought conditioning, plants were inoculated with western flower thrips (Frankliniella occidentalis Pergande) or green peach aphid (Myzus persicae Sulzer). Brushing and drought conditioning reduced plant height and shoot dry weight of all crops. Brushing of all three species generally reduced the number of thrips, as indicated by number of feeding scars or percent leaf area damaged. Drought conditioning did not affect thrips populations consistently. Undisturbed plants grown with ebb-and-flow irrigation exhibited the greatest damage from thrips. Brushing reduced the number of aphids on tomato relative to the nontreated controls. Drought did not reduce aphid populations consistently on any crop. Brushing for height control may be advantageous in an integrated pest-management program to control aphids and thrips.
Four-week-old salvia (Salvia splendens F. Sellow `Red Pillar') seedlings were treated with 0 or 50 ppm paclobutrazol, followed 5 h later by 0, 1, 2, or 4 times (0×, 1×, 2×, or 4×, respectively) the recommended label rate of bendiocarb (0.6 g a.i./liter), a carbamate insecticide. Seven days after treatment (DAT), phytotoxicity ratings increased with bendiocarb rate on all plants, but 50 ppm paclobutrazol reduced damage at 1× and 4× bendiocarb. Paclobutrazol also improved plant recovery from phytotoxicity damage at 21 DAT. Bendiocarb decreased the height of plants not treated with paclobutrazol at 7, 14, and 21 DAT. Plants treated with 40 ppm paclobutrazol had lower maximum phytotoxicity damage at 14 DAT, and even better recovery at 21 DAT than plants treated with 20 or 60 ppm paclobutrazol. Plants treated with paclobutrazol 4 days before applying bendiocarb had lower maximum phytotoxicity ratings relative to controls than plants treated 8 days before, the same day as, or 4 days after bendiocarb application. Chemical names used: β- [(4-chlorophenyl)methyl]- α -(1,1-dimethylethyl)-1 H- 1,2,4-triazole-1-ethanol (paclobutrazol); 2,2-dimethyl,1,3-benzodioxol-4-yl-methylcarbamate (bendiocarb).
Annual vinca [Catharanthus roseus (L.) G. Don] is intolerant of high fertility, cool temperatures, and wet soil conditions, making vinca difficult for growers to produce alongside other, more tolerant bedding plants. Our objective was to develop better recommendations for producers. Growth of `Grape Cooler' vinca was compared using different production inputs, including type of media (with or without bark), form of micronutrient source, and form of N. Optimal root and shoot dry weights occurred in peat-lite media with either sulfated or chelated micronutrients adjusted to pH 5.5. Root and shoot dry weights were greatest when high nitrate-N to ammonium-N ratio fertilizers were used. Root and shoot dry weights were negatively affected by high levels of ammonium-N in the fertilizer solution. Root development is the critical factor in the production of high-quality vinca. Our data suggest that root development may be optimized by using fertilizer products that have a high nitrate to ammoniacal nitrogen ratio. Micronutrients in the sulfate form also seem to enhance growth when medium pH is maintained near 5.5. Use of high-porosity, peat-based mixes appears to provide an optimal root growth environment.
Perennial growers experience marketing difficulty when the stem length, or height of their perennial stock is excessive. Both wholesale and retail outlets desire to keep height to a minimum, while still promoting the production of flowers. The objective of this study was to screen containerized, spring-planted perennials for response to the growth retardants Sumagic, Bonzi, and B-Nine. Each perennial variety used was treated with B-Nine (Daminozide at 5000 ppm Bonzi (paclobutrazol) at 240 ppm, and Sumagic (uniconizole-P) at the following rates: 0, 40, 80, 120, and 160 ppm.Pre-cooled plugs of cultivars were selected from the genera Achillea, Coreopsis, Echinaceae, Digitalis, Gaillardia, Phlox, Rudbeckia, Alcea, Veronica, and Monarda. A randomized complete block design was implemented. Eight of the nine cultivars were responsive to Sumagic, with a 12% to 79% range of reduction in height. Seven cultivars were responsive to Bonzi with a 20% to 61% range of reduction. Only one cultivar was responsive to B-Nine, requiring two applications of 5000 ppm, to yield a 22% reduction in height at 4WAT. Based upon growers' desire for up to 50% height reduction, a 30% height reduction assessment point was established as a minimum rate for production, and a 50% to 60% reduction was established as the maximum landscape rate (based upon in-landscape persistence).
Nine perennial bedding plants were screened for responsiveness to the plant growth retardant, Sumagic (uniconazole-P). Two weeks after planting, plugs were treated with one foliar spray of Sumagic at 0, 40, 80, 120, or 160 ppm at the label-recommended volume. Plant growth of Gaillardia grandiflora `Goblin' was not reduced by Sumagic. Height of Achillea × `Moonshine' was reduced 8% to 12% at 4 weeks after treatment (WAT), and the reduction persisted through 8 weeks after planting (WAP) to the landscape. Phlox paniculata `Joliet' responded linearly to increasing Sumagic rate with a maximum height reduction of 32% at 160 ppm. Coreopsis grandiflora `Sunray', Rudbeckia fulgida var. Sullivantii `Goldsturm' and Monarda didyma `Blue Stocking' responded significantly to Sumagic with 30% to 60% height reductions at 4 WAT, but no persistent effects at 8 WAP. Height of Veronica alpine `Goodness Grows' was reduced 32% to 68% at 4 WAT, but all Sumagic rates resulted in persistent reductions in plant height at 12 WAP. Plant height of Alcea rosea mix and Echinacea purpurea were excessively reduced (up to 79%) at 4 WAT, but there were no persistent effects on height of Alcea in the landscape. All rates of Sumagic resulted in persistent reductions in height of Echinacea at 8 WAP, but only plants treated with 120 and 160 ppm Sumagic were still significantly shorter than controls at 12 WAP
Brushing 2-week-old `Sunny' tomato (Lycopersicon esculentum Mill.) seedlings, grown in a commercial production greenhouse, for a period of 5 weeks reduced transplant growth and improved plant appearance. Brushing reduced stem length 37% and leaf area 31% relative to nontreated control plants. Plants were darker green in color, stockier, easier to handle, and tougher (exhibited less breakage) than nontreated plants.