Search Results

You are looking at 11 - 20 of 71 items for

  • Author or Editor: John Ruter x
Clear All Modify Search
Author:

A study was conducted with Dendranthemum ×grandiflorum (Ramat.) Kitamura garden chrysanthemum (`Grenadine', `Nicole', and `Tolima') to evaluate the growth and flowering of these plants grown in 2.6-L (no. 1) black plastic containers compared to plants grown in fiber containers with Cu(OH)2 impregnated into the container walls. For all three cultivars, growth indices, shoot and root dry weights, and total biomass increased for plants grown in fiber containers. Total number of flower buds per plant increased 30% to 32% for `Grenadine' and `Nicole' and 53% for `Tolima' grown in fiber containers. Plants grown in Cu(OH)2-impregnated fiber containers had less root coverage at the container:growing medium interface and no observable root circling in contrast to visible root circling on plants grown in black plastic containers. Foliar nutrient analysis on `Grenadine' showed that K decreased and Fe and Cu increased when grown in Cu(OH)2-impregnated fiber containers. No visible nutrient abnormalities were seen in this study.

Free access
Author:

A study was conducted with Magnolia grandiflora `St. Mary' to evaluate the effects of a pot-in-pot production system compared to a conventional aboveground production system and containers treated with or without copper hydroxide (Spin Out™). At 4 and 12 months after beginning the study, plants grown pot-in-pot were taller than plants in the conventional system. Stem diameters of plants grown pot-in-pot were also larger at 12 months. Production system influenced root dry weight in the outer 50% of the container, total root dry weight, percent root dry weight in the inner 50% of the container, percent root dry weight in the outer 50% of the container, and total biomass. Production system had no effect on shoot dry weight. Treatment with copper hydroxide had no effect on root or shoot growth. Production system and copper treatment influenced degree of root coverage. Plants grown pot-in-pot had higher rates of Ps and gs with increased Ci levels compared to plants above-ground. Production system had no effect on calculated transpiration rates.

Free access
Author:

Mouse ear (leaf curl, little leaf, squirrel ear) has been a problem for growers of container-grown river birch (Betula nigra L.) since the early 1990's. Mouse ear has been noticed in several southeastern States as well as Minnesota, Ohio, Oregon, and Wisconsin, making it a national problem. The disorder is easy to detect in nurseries as the plants appear stunted. The leaves are small, wrinkled, often darker green in color, commonly cupped, and have necrotic margins. New growth has shortened internodes which gives plants a witches-broom appearance. Plants growing in native soil rarely express the disorder. Several common micronutrients have been evaluated with no results. A trial was initiated in June, 2003 to determine if nickel deficiency was the cause of mouse-ear. Symptomatic river birch trees growing in a pine bark substrate in containers were treated with foliar applications of nickel sulfate and a substrate drench. Topdress applications of superphosphate (0-46-0) and Miloroganite, products known to contain nickel, were also applied. At 16 days after treatment (DAT), up to 5 cm of new growth occurred on plants sprayed with nickel sulfate and foliar concentrations of nickel in the new growth increased five fold compared to control plants. At 30 DAT, shoot length increased 60%, leaf area increased 83%, and leaf dry mass increased 81% for trees receiving a foliar application compared to non-treated control plants. Treating trees with a substrate drench alleviated symptoms, whereas treatment with superphosphate and Milorganite did not. Trees receiving a foliar or drench application had normal growth for the remainder of the growing season. Additional studies are underway to refine methods of application, rates, and sources of nickel suitable for use.

Free access
Author:

Membrane thermostability of `Needlepoint' Chinese holly (Ilex cornuta Lindl. & Paxt.), `Albo-marginata' English holly (Ilex aquifolium L.), and `Nellie R. Stevens', an Ilex aquifolium × Ilex cornuta hybrid, was determined by measuring electrolyte leakage in excised leaves and roots. The critical midpoint heat-killing temperature (T,) after a 30-min exposure was 54.4 ± 0.4C for `Nellie R. Stevens' leaves and was ≈ lC higher than that for Chinese (52.9 ± 0.3C) or English holly (52.9 ± 0.4C). The Tm for English holly roots (53.9 ±_ 1.5C) was higher than that for either `Nellie R. Stevens' (51.7 ± 0.3C) or Chinese holly (50.1 ± 0.3C). The results of this study suggest that English holly and `Nellie R. Stevens' leaves and roots can withstand direct heat injury equal to or greater than that of Chinese holly.

Free access
Author:

A study was conducted with Lagerstroemia indica x fauriei `Acom a' to evaluate methods for reducing rooting-out problems in a PIP production system. The products tested were Biobarrier™, a geotextile fabric impregnated with trifluralin; Root Control'” fabric bag material; and Spin Out™, a commercial formulation of copper hydroxide (7.1%) in latex paint. Biobarrier™ reduced plant height, shoot dry weight, percent root dry weight outside of the planted container and total biomass compared to the non-treated control. For the control, 7.1% of the total root dry weight was found between the holder pot and planted container compared to 0.2% for the Biobarrier™ treatment. When the holder pot and planted container or the planted container and Root Control™ fabric were both treated with Spin Out™, plant height and shoot dry weight were reduced. Spin Out™ reduced root circling on the sidewalls of the planted containers but not on the bottom of the containers. All treatments except the control reduced rooting-out to a degree that allowed for the manual harvesting of the planted container from the holder pot after seven months in the field.

Free access
Author:

A study was conducted with Coreopsis verticillata L. `Moonbeam' and Plumbago auriculata Lam. to evaluate the growth of these perennial plants in 2.6-liter (#1) black plastic containers (BPCs) compared to plants grown in fiber containers with Cu(OH)2 (FCs+) impregnated into the container walls. Coreopsis root and shoot dry weight was unaffected by container type, whereas Plumbago root and shoot dry weight was greater (2.2× and 1.6×, respectively) for plants grown in FCs+ compared to BPCs. The root : shoot ratio of Plumbago increased 30% when plants were grown in FCs+ compared to BPCs. Root circling was effectively controlled for both species grown in the FCs+. FCs remained in salable condition for the duration of the study. In contrast to untreated FCs, FCs+ will have to be removed at transplanting to allow for normal root development.

Full access
Author:

Paclobutrazol was applied as a foliar spray, root-medium drench, and impregnated spike to `New Gold' lantana grown in 2.8-liter pots. Plants were treated 14 June 1993 at rates of 0, 0.5, and 1.0 mg a.i. paclobutrazol/pot and were harvested 27 July 1993 when control plants required further pruning. Impregnated spikes reduced plant size and flowering to a greater degree than spray applications. Drenches reduced root dry weight and biomass compared to spray applications. Plants treated with 0.5 and 1.0 mg a.i. paclobutrazol/pot were not different in regards to plant growth and flowering. Compared to nontreated controls, plants treated with paclobutrazol had a reduced growth index, decreased shoot and root dry weight, and fewer flowers with open florets. All plants in the study were marketable, even though growth control was considered excessive. Lower rates than used in this study should be considered for controlling growth. These results suggest that impregnated spike formulations of paclobutrazol may control plant growth in pine bark-based media.

Full access