Search Results

You are looking at 11 - 20 of 48 items for

  • Author or Editor: John Kelly x
Clear All Modify Search
Free access

Nihal C. Rajapakse and John W. Kelly

Transpiration rates of chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] plants grown under spectral filters were evaluated as part of an investigation on using light quality to regulate plant growth. The 6% CuSO4·5H2O spectral filter reduced photosynthetic photon flux density in red (R) and far red (FR) wavelengths and increased the R: FR and blue (B): R ratios (B = 400 to 500 nm; R = 600 to 700 nm; FR = 700 to 800 nm) of transmitted light relative to the water (control) filter. After 28 days, cumulative water use of plants grown under CuSO4 filters was ≈37% less than that of control plants. Transpiration rates were similar among plants grown under CuSO4 and control filters when expressed as leaf area, a result suggesting that the reduced cumulative water loss was a result of smaller plant size. Plants grown under CuSO4 filters had slightly lower (10%) stomatal density than control plants. Light transmitted through CuSO4 filters did not alter the size of individual stomata; however, total number of stomata and total stomatal pore area per plant was ≈50% less in plants grown under CuSO4 filters than in those grown under control filters due to less leaf area. The results suggest that altering light quality may help reduce water use and fertilizer demands while controlling growth during greenhouse production.

Free access

Nihal C. Rajapakse and John W. Kelly

The use of light quality as an alternate method for controlling ornamental plant growth was evaluated using copper sulfate solutions as optical filters, The light passed through CuSO4 solutions had high red/far-red (R/FR) ratio. Plant height and average internode length were significantly reduced by high R/FR light. Plants grown under high R/FR light had smaller leaves and a lower total leaf area but had thicker leaves, as indicated by specific leaf weight, than the control plants. Fresh and dry weights of leaves, stems and roots were reduced by high R/FR light. Dry matter accumulation in leaves was increased by high R/FR light while it was reduced in stems. Exogenous gibberellic acid (GA) application partially overcame the height reduction under high R/FR light indicating that GA biosynthesis maybe affected by light treatment. Results suggests alteration of light quality could be used in controlling ornamental plant growth as an alternate method to conventional chemical growth regulator applications.

Free access

Margaret J. McMahon and John W. Kelly

`Spears' chrysanthemums were grown in chambers fitted with double-walled exolite filled with spectral filtering solutions: a blue textile dye that absorbed red light, CuSO4·5H2O that absorbed far-red light, and H2O that was spectrally non-selective (control).

Leaves of `Spears' grown under CuSO4-filters had increased chlorophyll a (23%), chlorophyll b (26%), xanthophyll (22%), and β-carotene (24%) compared to plants grown under H2O or blue-dye filters. Ratios of total carotenoid: chlorophyll and chlorophyll a: chlorophyll b were not affected by filter.

Individual leaf area was reduced 25% under CuSO4 filters compared to other filters. Stomates per unit area were not affected by filters, however stomates per leaf were reduced 25% under CuSO4 filters because of leaf size reduction. Stomate length and width were not affected by filter. Leaves from plants grown under CuSO4-filters had an internal structure resembling that of sun-type leaves. Other filters induced a shade-type leaf.

Free access

David G. Clark and John W. Kelly

Rosa × hybrida `Meijikatar' plants were fertilized on weekdays with Hoagland's solution at 100, 200, or 300 mg·liter-1 nitrogen. Prior to simulated shipping, plants were treated with benzyladenine at 0, 25, 50, or 100 mg a.i.·liter-1. Plants were subsequently paper sleeved and stored in cardboard boxes in darkness at 16 C for 5 days.

On the day of harvest, plant height and number of flowers per plant were not affected by production nitrogen level. After removal from simulated shipping, total chlorophyll was increased in the lower leaves of plants grown at higher nitrogen rates and treated with higher rates of benzyladenine. Three and five days after removal from simulated shipping, the least percent leaf chlorosis was observed on plants treated with higher rates of cytokinin, but there was no effect of production nitrogen regime.

Free access

David G. Clark and John W. Kelly

Rosa × hybrida `Meijikatar' plants were fertilized on weekdays with Hoagland's solution at 100, 200, or 300 mg·liter-1 nitrogen. Prior to simulated shipping, plants were treated with benzyladenine at 0, 25, 50, or 100 mg a.i.·liter-1. Plants were subsequently paper sleeved and stored in cardboard boxes in darkness at 16 C for 5 days.

On the day of harvest, plant height and number of flowers per plant were not affected by production nitrogen level. After removal from simulated shipping, total chlorophyll was increased in the lower leaves of plants grown at higher nitrogen rates and treated with higher rates of benzyladenine. Three and five days after removal from simulated shipping, the least percent leaf chlorosis was observed on plants treated with higher rates of cytokinin, but there was no effect of production nitrogen regime.

Free access

John W. Kelly and Terri W. Starman

Physostegia purpurea Blake is a native, herbaceous perennial that has potential as a field-grown cut flower. Physostegia stems were harvested with one third of the florets open and were recut underwater in the laboratory. Fresh cut flowers treated with silver thiosulfate (STS) and held in a 2% preservative solution lasted 14 days, while control stems in deionized water (DI) lasted 6 days. Cut stems placed in darkness at 0C for 1 week had 8 days of vase life after removal from storage and treatment with STS and preservative, while stems held in DI after storage lasted only 4 days. Stems held dry at 22.5C and 43% RH for 8 hours before being placed in preservative had similar vase life as flowers placed in preservative immediately after harvest.

Free access

Ted Whitwell, John Kelly and William B. Miller

In 1993, Carolina Nurseries and the Department of Horticulture at Clemson Univ. entered into a partnership to create a research and development program to solve short and long term nursery production problems. Research is conducted on site at Carolina Nurseries in a specially designed 0.6-ha area built by the nursery. Faculty from the Depts. of Horticulture, Agricultural and Biological Engineering, Plant Pathology and Entomology have worked with graduate and undergraduate students located on site. The nursery staff is involved in overall planning and stay current with results so that research can be immediately implemented on the nursery. Yearly funding for the graduate student is provided by the nursery and grant funds are obtained from various companies for labor and supplies. Carolina Nurseries has committed to funding research to improve their production and also sharing the results with the rest of the nursery industry. Research findings are presented in peered reviewed articles, conference proceedings, abstracts, and oral presentations. Outstanding training opportunities for students and staff are available to also improve career development for future nursery managers. Faculty interaction with companies and the nursery industry are enhanced.

Free access

Nihal C. Rajapakse and John W. Kelly

The interactions of light quality and growing season on growth and carbohydrate content of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] plants were evaluated using 6% CuSO4 and water (control) as spectral filters. Light transmitted through the CuSO4 filter significantly reduced plant height and internode length compared to control plants regardless of the season. However, the degree of response varied with growing season. Light transmitted through CuSO4 filters delayed flowering. Total number of flowers was not affected by spectral filter, but plants grown under CuSO4 filter had smaller flowers than those grown under the control filter. Light transmitted through CuSO4 filter resulted in reduced leaf and stem soluble sugar (sucrose, glucose, and fructose) and starch concentrations regardless of the growing season. However, the magnitude of reduction was greater in spring- than in fall-grown plants. Stems of fall-grown plants had more starch deposition than spring-grown plants under both filters. Filters with specific spectral characteristics can be used as alternative means of producing compact plants in the greenhouses, however, the delay in flowering and smaller flowers could limit their use for growth control of plants intended for flower production.

Full access

John F. Kelly and Bernard H. Zandstra