Search Results

You are looking at 11 - 20 of 59 items for

  • Author or Editor: Jianjun Chen x
Clear All Modify Search
Free access

Hui Cao, Hui Cao, Dennis B. McConnell and Jianjun Chen*

The irritant effect of Dieffenbachia sap is attributed to protelytic enxymes but calcium oxalate crystals are considered to puncture cells and allow enzyme entrance. To date, no detailed study of the location, type, or frequency of calcium oxalate crystals in Dieffenbachia species or cultivars has been undertaken. To do so, three uniform tissue culture plantlets of Dieffenbachia `Carina',`Rebecca' or `Star Bright' were transpanted into 15 cm pots, grown in a shaded greenhouse under 385 μmol·m-2·s-1 and fertigated with 20 N-8.7 P-16.6 K water-soluble fertilizer at N concentrations of 200 mg·L-1 twice weekly. Ten weeks later, samples of stem, root, and leaves were taken from 4 pots of each cultivar to determine the distribution and type of calcuium oxalate crystals in each plant organ via polarized light microscopy. Two types of calcium oxlate crystals, raphides and druses, were found in the stem, leaves and roots. Druse density increased as leaves andd stems matured while the number of raphide idioblasts remained relatively constant. Crystal density was highest at lateral initation sites of buds and roots. Significant differences were found in crystal density among cultivars even though `Carina' and `Star Bright' are sports selected from `Camille'. This suggests that reduction of calcium oxalate density of Dieffenbachia cultivars is possible through breeding.

Free access

Qiansheng Li, Jianjun Chen, Robert H. Stamps and Lawrence R. Parsons

This study evaluated chilling sensitivity of eight popular Dieffenbachia cultivars. Tissue culture liners were potted in 15-cm diameter pots using Vergro Container Mix A and grown in a shaded greenhouse under maximum photosynthetically active radiation of 285 μmol·m−2·s−1 for 5 months. After determining growth indices, the plants were chilled in walk-in coolers at 2, 7, or 12 °C for 6, 12, or 24 h. Chilled plants were placed back in the shaded greenhouse for chilling injury and growth evaluation. Visible symptoms of injury included chlorosis, necrosis, water-soaked patches on leaves, or complete wilting. In addition to leaf injury, stems of some cultivars chilled at 2 °C for 24 h became water-soaked at the base, which resulted in the death of either entire shoots or entire plants depending on cultivars. Leaf injury occurred in all cultivars chilled at 2 °C, except for ‘Panther’; and the longer the exposure at this temperature, the greater the injury. No visual injury was observed among plants chilled at 7 and 12 °C except ‘Tropic Honey’ that had 26% of leaves injured at 7 °C. Based on the percentage of injured leaves 12 days after chilling at 2 °C for 24 h, the sensitivity of the eight cultivars ranked as follows: Tropic Honey > Sterling > Carina ≥ Octopus > Camille > Camouflage > Star Bright > Panther. In addition to visual injury, plant growth was also affected by chilling during the subsequent 3 months of growth. All ‘Tropic Honey’ chilled at 2 °C died regardless of the tested chilling duration. Growth indices of all other cultivars except for ‘Panther’ chilled at 2 °C for 24 h significantly decreased compared with those of controls. ‘Camille’, ‘Camouflage’, ‘Carina’, and ‘Sterling’ also exhibited significant growth reduction after chilling at 2 °C for 12 h. This study showed that genetic variation in chilling sensitivity exists among cultivated Dieffenbachia. The identified chilling-tolerant cultivars could be used for breeding of new chilling-tolerant cultivars. The use of chilling-tolerant cultivars in production may reduce the chance of injury during heating outages and shipment.

Free access

Xiaoying Li, Hongxia Xu, Jianjun Feng and Junwei Chen

Deep transcriptome sequencing allows for the acquisition of large-scale microsatellite information, and it is especially useful for genetic diversity analysis and mapping in plants without reference genome sequences. In this study, a total of 14,004 simple sequence repeats (SSRs) were mined from 10,511 unigenes screening of 63,608 nonredundant transcriptome unigenes in loquat (Eriobotrya japonica) with a frequency of 22 SSR loci distributed over 100 unigenes. Dinucleotide and trinucleotide repeat SSRs were dominant, accounting for 20.62%, and 42.1% of the total, respectively. Seventy primer pairs were designed from partial SSRs and used for polymerase chain reaction (PCR) amplification. Of these primer pairs, 54 exhibited amplification and 33 were polymorphic. The number of alleles at these loci ranged from two to 17, and the polymorphism information content values ranged from 0.24 to 0.89. We tested the transferability of 33 SSR polymorphic primer pairs in apple and pear, and the transferability rates in these two species were 90.9% and 87.9%, respectively. A high level of marker polymorphism was observed in apple [Malus ×domestica (66.7%)], whereas a low level was observed in pear [Pyrus sp. (51.5%)]. In addition, the PCR products from seven SSR primer pairs were selected for sequence analysis, and 89.2% of the fragments were found to contain SSRs. SSR motifs were conserved among loquat, apple, and pear. According to our sequencing results for real SSR loci, ≈12,490 SSR loci were present in these loquat unigenes. The cluster dendrogram showed a distinct separation into different groups for these three species, indicating that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the species of Maloideae in the Rosaceae. The results of our identified SSRs should be useful for genetic linkage map construction, quantitative trait locus mapping, and molecular marker-assisted breeding of loquat and related species.

Full access

Qiansheng Li, Jianjun Chen, Russell D. Caldwell and Min Deng

This study evaluated the potential for using cowpeat, a composted dairy manure, as a component of container substrates for foliage plant propagation. Using a commercial formulation (20% perlite and 20% vermiculite with 60% Canadian or Florida peat based on volume) as controls, peat was replaced by cowpeat at 10% increments up to 60%, which resulted in a total of 14 substrates. Physical and chemical properties such as air space, bulk density, container capacity, total porosity, pH, carbon-to-nitrogen ratio, and cation exchange capacity of the cowpeat-substituted substrates were largely similar to those of the respective control. However, the electrical conductivity (EC) increased with the increased volume of cowpeat. The 14 substrates were used for rooting single-node cuttings of golden pothos (Epipremnum aureum) and heartleaf philodendron (Philodendron scandens ssp. oxycardium) and three-node cuttings of ‘Florida Spire’ fig (Ficus benjamina) and germinating seeds of sprenger asparagus (Asparagus densiflorus) in a shaded greenhouse. All cuttings rooted in the 14 substrates, and the resultant shoot and root dry weights of golden pothos and ‘Florida Spire’ fig 2 months after rooting did not significantly vary across seven Canadian peat- or Florida peat-based substrates. Shoot dry weights of heartleaf philodendron were also similar across substrates, but the root dry weight produced in the Canadian peat-based control substrate was much greater than that produced in the substrate containing 60% cowpeat. Root dry weight and root length produced in the Florida peat-based control substrate were also significantly greater than those produced in substrates substituted by 60% cowpeat. These results may indicate that cuttings of golden pothos and ‘Florida Spire’ fig are more tolerant of higher EC than those of heartleaf philodendron, as the substrate with 60% cowpeat had EC ≥ 4.16 dS·m−1. Seed germination rates of sprenger asparagus from cowpeat-substituted Canadian peat-based substrates were greater than or comparable to those of the control substrate. Seed germination rates were similar across the seven Florida peat-based substrates. The root-to-shoot ratios of seedlings germinated from both control substrates were significantly greater than those germinated from substrates substituted by cowpeat. This difference could be partially explained by the higher nutrient content in cowpeat-substituted substrates where shoot growth was favored over root growth. Propagation is a critical stage in commercial production of containerized plants. The success in using up to 60% cowpeat in rooting and seed germination substrates may suggest that cowpeat could be an alternative to peat for foliage plant propagation.

Full access

Qiansheng Li, Jianjun Chen, Dennis B. McConnell and Richard J. Henny

A simple and effective method for quantification of leaf variegation was developed. Using a digital camera or a scanner, the image of a variegated leaf was imported into a computer and saved to a file. Total pixels of the entire leaf area and total pixels of each color within the leaf were determined using an Adobe Photoshop graphics editor. Thus, the percentage of each color's total pixel count in relation to the total pixel count of the entire leaf was obtained. Total leaf area was measured through a leaf area meter; the exact area of this color was calculated in reference to the pixel percentage obtained from Photoshop. Using this method, variegated leaves of ‘Mary Ann’ aglaonema (Aglaonema x), ‘Ornate’ calathea (Calathea ornate), ‘Yellow Petra’ codiaeum (Codiaeum variegatum), ‘Florida Beauty’ dracaena (Dracaena surculosa), ‘Camille’ dieffenbachia (Dieffenbachia maculata), and ‘Triostar’ stromanthe (Stromanthe sanguinea) were quantified. After a brief training period, this method was used by five randomly selected individuals to quantify the variegation of the same set of leaves. The results were highly reproducible no matter who performed the quantification. This method, which the authors have chosen to call the quantification of leaf variegation (QLV) method, can be used for monitoring changes in colors and variegation patterns incited by abiotic and biotic stresses as well as quantifying differences in variegation patterns of plants developed in breeding programs.

Free access

Qiansheng Li, Min Deng, Jianjun Chen and Richard J. Henny

Pachira aquatica Aubl. has recently been introduced as an ornamental foliage plant and is widely used for interiorscaping. Its growth and use under low light conditions, however, have two problems: leaf abscission and accelerated internode elongation. This study was undertaken to determine if production light intensity and foliar application of paclobutrazol [β-(4-chlorophenyl)methyl-α-(1,1-dimethylethyl)-1H- 1,2,4- triazole-1-ethanol] improved plant growth and subsequent interior performance. Two-year-old P. aquatica trunks were planted in 15-cm diameter plastic pots using a peat-based medium and were grown in a shaded greenhouse under three daily maximum photosynthetic photon flux densities (PPFD) of 285, 350, and 550 μmol·m−2·s−1. Plant canopy heights, average widths, and internode lengths were recorded monthly over a 1-year production period. Two months after planting, the plant canopy was sprayed once with paclobutrazol solutions at concentrations of 0, 50, and 150 mg·L−1, ≈15 mL per plant. Before the plants were placed indoors under a PPFD of 18 μmol·m−2·s−1 for 6 months, net photosynthetic rates, quantum yield, and light saturation and compensation points were determined. Results showed that lowering production light levels did not significantly affect canopy height, width, or internode length but affected the photosynthetic light response curve and reduced the light compensation point. Foliar application of paclobutrazol reduced internode length, thereby resulting in plants with reduced canopy height and width and more compact growth form. Paclobutrazol application also reduced the light compensation point of plants grown under 550 μmol·m−2·s−1. Plants with the compact growth form did not grow substantially, dropped fewer leaflets, and thus maintained their aesthetic appearance after placement indoors for 6 months. These results indicated that the ornamental value and interior performance of P. aquatica plants can be significantly improved by producing them under a PPFD range between 285 and 350 μmol·m−2·s−1 and foliar spraying of paclobutrazol once at a concentration between 50 and 150 mg·L−1.

Free access

Richard J. Henny, Jianjun Chen and Terri A. Mellich

Free access

Min Deng, Jianjun Chen, Richard J. Henny and Qiansheng Li

Codiaeum variegatum (L.) Blume, commonly known as crotons, are among the most popular ornamental foliage plants cultivated for either landscaping or interiorscaping. Currently, more than 300 cultivars are available; each has a distinct phenotype, particularly in leaf morphology. Thus far, there is no information regarding their genetic relationships. In this study, genetic relatedness of 44 cultivars of C. variegatum was investigated using amplified fragment length polymorphism (AFLP) markers. Fourteen primer combinations generated a total of 549 AFLP fragments, which were used to estimate genetic distances and construct dendrograms based on the neighbor-joining method. The 44 cultivars were divided into seven clusters, which concurred with the known history of croton geographical isolation, adaptation, introduction, and breeding activities but differed from the classification made by the Croton Society based on leaf morphology. The established genetic relationships could be important for future germplasm identification and conservation and new cultivar development. Additionally, genetic distance among the 44 cultivars was 0.322 or less, indicating that they have a narrow genetic base. The narrow genetic base may indicate that the cultivars were derived from a common progenitor. On the other hand, 81% of the 549 fragments were polymorphic and the average polymorphic information content was 0.22, which suggests that the cultivars are genetically highly polymorphic. The high polymorphisms may be attributed to significant gene loss or gain facilitated by mutation and/or chromosome variation, thus contributing to a wide range of leaf morphological differences among cultivars.

Free access

Richard J. Henny, Jianjun Chen and T.A. Mellich

Free access

Robert H. Stamps, Seenivasan Natarajan, Lawrence R. Parsons and Jianjun Chen

Four water-based cold protection systems [under-benches mist (UBM), over-roadways mist (ORM), and two among-plants fog (APF1, APF2)] were evaluated for their water use and effectiveness in protecting ornamental foliage plants from chilling injury (CI) under protected shade structures at three commercial locations in Florida. UBM used a two-stage thermostat-controlled system with mist nozzles on 25-cm above-ground risers combined with an overhead retractable heat curtain. Both ORM and APF1 had seasonally applied polyethylene film cladding and manually controlled irrigation systems. The ORM system had the mist nozzles located 1.8 m high and APF1 and APF2 systems had the low-pressure fog nozzles mounted on 25-cm above-ground risers spaced among the plants. Temperature data loggers were placed outside and inside the northwest sections of the shadehouses. ORM and the two APF systems were evaluated during freeze events in 2006, 2007, and 2008 and UBM only in 2007 and 2008. UBM, ORM, and APF1 successfully kept the shadehouse temperatures above critical chilling temperatures for all of the foliage plants. APF2 protected all foliage crops except for jungle drum “palm” (Carludovica sp.) that sustained CI. At the UBM site, the air temperatures recorded inside the shadehouse were ≈17 °C warmer than outside. Both ORM and APF1 maintained adequately warm temperatures inside the shadehouses; however, the fog system maintained equal or higher temperatures than the mist system and used 86% less water. Inside temperatures were lower with APF2 than APF1 although the emitter type was the same and the water application rates were similar. These temperature differences were attributable to the greater APF2 shadehouse surface area (SA) and volume (V) compared with APF1 and indicate that the SA and V of structures being heated need to be considered when designing water-based low-pressure fog heating systems. The ORM and both fog systems conserved water compared with using the conventional sprinkler irrigation systems. These results show the potential of water-based approaches for maintaining shadehouses above chilling temperatures during freeze events.