Search Results

You are looking at 11 - 20 of 39 items for

  • Author or Editor: Jeffrey K. Brecht x
Clear All Modify Search
Free access

George J. Hochmuth, Jeffrey K. Brecht and Mark J. Bassett

Nitrogen is required for successful carrot production on sandy soils of the southeastern United States, yet carrot growers often apply N in amounts exceeding university recommendations. Excessive fertilization is practiced to compensate for losses of N from leaching and because some growers believe that high rates of fertilization improve vegetable quality. Carrots (Daucus carota L.) were grown in three plantings during Winter 1994–95 in Gainesville, Fla., to test the effects of N fertilization on yield and quality. Yield increased with N fertilization but the effect of N rate depended on planting date; 150 kg·ha–1 N maximized yield for November and December plantings but 180 kg·ha–1 N was sufficient for the January planting. Concentration of total alcohol-soluble sugar was maximized at 45 mg·g–1 fresh root with 140 kg·ha–1 N for `Choctaw' carrots, whereas sugar concentration of `Scarlet Nantes' roots was not affected by N fertilization. Carrot root carotenoid concentration was maximized at 55 mg·kg–1 fresh root tissue with 160 kg·ha–1 N. Generally, those N fertilization rates that maximized carrot root yield also maximized carrot quality as determined by sugar and carotenoid concentrations.

Free access

Jeffrey K. Brecht, Steven A. Sargent and L. A. Risse

Snap beans were room cooled (RC) or forced-air cooled (FA) in a 4.5°C commercial cold storage room, or hydrocooled (HC) in a commercial flume-type unit with 4°C water containing 175 ppm NaOCl. The beans were packed in wirebound wooden crates (WC) or waxed corrugated fiberboard cartons (FC) before (RC, FA) or after (HC) precooking and stored one week at 10°C before evaluation. Ascorbic acid, chlorophyll and fiber contents did not differ among treatments, while moisture content and per cent unshrivelled beans were lowest in FA and highest in HC, and lower in WC than in FC containers. HC reduced development of mechanical damage symptoms (browning) and decay compared to RC and FA. The former effect was attributable to the presence of NaOCl rather than leaching or increased cooling rate in HC. HC beans packed in FC had the highest per cent sound beans and lowest per cent beans showing mechanical damage symptoms of all the treatment combinations tested.

Full access

George J. Hochmuth, Jeffrey K. Brecht and Mark J. Bassett

Potassium (K) is required for successful carrot (Daucus carota) production on sandy soils of the southeastern United States, yet there is little published research documenting most current university Cooperative Extension Service recommendations. Soil test methods for K in carrot production have not been rigorously validated. Excessive fertilization sometimes is practiced by carrot growers to compensate for potential losses of K from leaching and because some growers believe that high rates of fertilization may improve vegetable quality. Carrots were grown in three plantings during the winter of 1994-95 in Gainesville, Fla., to test the effects of K fertilization on carrot yield and quality on a sandy soil testing medium (38 ppm) in Mehlich-1 soil-test K. Large-size carrot yield was increased linearly with K fertilization. Yields of U.S. No. 1 grade carrots and total marketable carrots were not affected by K fertilization. K fertilizer was not required on this soil even though the University of Florida Cooperative Extension Service recommendation was for 84 lb/acre K. Neither soluble sugar nor carotenoid concentrations in carrot roots were affected by K fertilization. The current K recommendation for carrots grown on sandy soils testing 38 ppm Mehlich-1 K could be reduced and still maintain maximum carrot yield and root quality.

Free access

Ming-Wei S. Kao, Jeffrey K. Brecht, Jeffrey G. Williamson and Donald J. Huber

Some physiological and biochemical properties of melting flesh (MF) and non-melting flesh (NMF) peaches [Prunus persica (L.) Batsch] were determined during ripening for 5 days at 20 °C. Respiration rates and ethylene production of MF ‘Flordaprince’, MF ‘TropicBeauty’, NMF ‘UFSun’, and NMF ‘Gulfking’ were measured at different harvest skin ground color-based maturity stages. The MF cultivars at harvest were mostly preclimacteric or at the onset of ripening. The NMF cultivars generally had higher ethylene production at harvest and throughout ripening than the MF cultivars; thus, the NMF fruit had started ripening on the tree before harvest. Some of the NMF fruit harvested at more advanced stages quickly became postclimacteric during the storage period. Quality determination after fruit ripening showed that MF ‘TropicBeauty’ had the highest soluble solids content (SSC), but also the highest titratable acidity (TA). The NMF cultivars had lower TA than the MF cultivars. NMF ‘Gulfking’ consistently had high SSC/TA, which was the result of it having the lowest TA. The NMF cultivars retained firmer texture than the MF cultivars during ripening. The flesh firmness of the NMF cultivars was four to five times greater than that of the MF cultivars. To investigate the reason for this significant textural difference, the activities of the cell wall modification enzymes pectin methylesterase (PME) and polygalacturonase (PG) were quantified in all four cultivars at advanced ripeness stages. PME activity appeared to be more directly related with peach fruit softening than PG activity.

Full access

Marcos D. Ferreira, Jeffrey K. Brecht, Steven A. Sargent and Craig K. Chandler

Hydrocooling was evaluated as an alternative to forced-air cooling for strawberry (Fragaria × ananassa) fruit. `Sweet Charlie' strawberries were cooled by forced-air and hydrocooling to 4 °C and held in different storage regimes in three different trials. Quality attributes, including surface color, firmness, weight loss, soluble solids, and ascorbic acid content, pH and total titratable acidity, were evaluated at the full ripe stage. Fruit hydrocooled to 4 °C and stored at different temperatures for 8 or 15 days showed overall better quality than forced-air cooled fruit, with significant differences in epidermal color, weight loss, and incidence and severity of decay. Fruit stored wrapped in polyvinylchloride (PVC) film after forced-air cooling or hydrocooling retained better color, lost less weight, and retained greater firmness than fruit stored uncovered, but usually had increased decay. There is potential for using hydrocooling as a cooling method for strawberries.

Free access

Marcos D. Ferreira, Steven A. Sargent, Jeffrey K. Brecht and Craig K. Chandler

Strawberry (Fragaria ×ananassa Duch.) fruit are very susceptible to mechanical injury and for this reason are normally field-packed. Fruit of three cultivars (Chandler, Oso Grande, Sweet Charlie) were subjected to forced-air or hydrocooling to reach pulp temperatures between 1 and 30 °C and then individually subjected to compression and impact forces representative of commercial handling operations. Strawberries with a pulp temperature of 24 °C exhibited sensitivity to compression but greater resistance to impacts. As pulp temperature decreased, fruit were less susceptible to compression as shown by up to 60% reduction in bruise volume. In contrast, strawberries at 1 °C pulp temperature had more severe impact bruising with up to 93% larger bruise volume than at 24 °C depending on the cultivar. Strawberries also showed different impact bruise susceptibility depending on the cooling method. Impacted fruit that were forced-air cooled had larger bruise volumes than those that were hydrocooled. The impact bruise volume for strawberries forced-air cooled to 1 °C was 29% larger than for fruit hydrocooled to 20 °C, 84% higher than those forced-air cooled to 20 °C, and 164% higher than those hydrocooled to 1 °C. Because incidence and severity of impact and compression bruises are temperature-dependent, strawberry growers should consider pulp temperature for harvest scheduling and for potential grading on a packing line. Hydrocooling shows promise to rapidly cool strawberry fruit while reducing weight loss and bruising sensitivity.

Full access

Charles E. Barrett, Xin Zhao, Charles A. Sims, Jeffrey K. Brecht, Eric Q. Dreyer and Zhifeng Gao

Grafting has many purposes in vegetable production. It is used for control of soilborne pathogens, season extension in protected culture, and improving productivity in cucurbitaceous and solanaceous crops. Consumers desire heirloom tomatoes (Solanum lycopersicum) for their perceived excellent flavor. Heirloom tomatoes are susceptible to many soilborne diseases and may benefit from grafting onto more robust, disease-resistant rootstocks especially under organic production. In this two-year study, heirloom tomato ‘Brandywine’ was grafted onto tomato hybrid ‘Survivor’ and interspecific tomato hybrid ‘Multifort’ rootstocks to determine the effects of grafting on fruit quality attributes such as soluble solids content (SSC), pH, total titratable acidity (TTA), and vitamin C. Nongrafted and self-grafted ‘Brandywine’ tomatoes were included as controls. Consumer sensory tests were also conducted to assess the effects of grafting on overall appearance and acceptability, firmness, tomato flavor, and sweetness. No significant differences in vitamin C, SSC, pH, or TTA were found in fruit from the nongrafted, self-grafted, and ‘Brandywine’ grafted with the two rootstocks either year. The SSC of all tomatoes in 2010 was lower than that of 2011. In 2010, fruit from ‘Brandywine’ grafted onto the rootstock ‘Survivor’ was scored significantly lower in appearance, acceptability, and flavor than the nongrafted ‘Brandywine’ treatment. All grafted treatments resulted in a significant decrease in acceptability ratings in the consumer sensory test. No significant differences were observed between nongrafted and grafted treatments in 2011. Consumers who reported more frequent consumption of fresh tomato tended to give lower ratings for most sensory attributes evaluated. Harvest time and fruit ripeness need to be considered in future research to better understand the influence of grafting with selected rootstocks on fruit composition and sensory attributes of heirloom tomatoes.

Full access

Jorge A. Osuna-Garcia, Jeffrey K. Brecht, Donald J. Huber and Yolanda Nolasco-Gonzalez

Gaseous 1-methylcyclopropene (1-MCP) delays mango (Mangifera indica) fruit ripening, but requires 12 hours of application in sealed containers. In some fruit species, aqueous formulation applied as a postharvest dip for only 1 to 5 minutes has shown the same effectiveness as gaseous 1-MCP. This research was conducted to determine the effectiveness of aqueous 1-MCP on delay of the ripening process, extension of shelf life, and maintenance of fruit quality of ‘Kent’ mango fruit with or without quarantine hot water treatment (QHWT). Three experiments were conducted during the 2013 season in Mexico and Florida and during the 2014 season in Mexico. Aqueous 1-MCP caused delay of fruit ripening as shown by maintenance of fruit firmness, attenuation of flesh color development, and delayed increase of total soluble solids (TSS). However, it had a negative interaction with QHWT, causing surface spots and lenticel blackening to develop during shipping simulation [3 weeks at 12 ± 1 °C, 90% ± 5% relative humidity (RH)] and market simulation (7 days at 22 ± 2 °C, 75% ± 10% RH). This negative interaction was less when 1-MCP was applied before QHWT, somewhat higher when 1-MCP was applied after QHWT, and most severe when 1-MCP was applied after QHWT + hydrocooling. By contrast, the ripening of fruit treated with 1-MCP without QHWT was delayed without affecting external appearance. Thus, 1-MCP may be more useful for mango markets that do not require mandatory QHWT.

Restricted access

Desire Djidonou, Amarat H. Simonne, Karen E. Koch, Jeffrey K. Brecht and Xin Zhao

In this study, the effects of grafting with interspecific hybrid rootstocks on field-grown tomato fruit quality were evaluated over a 2-year period. Fruit quality attributes from determinate ‘Florida 47’ tomato plants grafted onto either ‘Beaufort’ or ‘Multifort’ rootstocks were compared with those from non- and self-grafted controls. Grafted plants had higher fruit yields than non- and self-grafted plants, and increased production of marketable fruit by ≈41%. The increased yield was accompanied by few major differences in nutritional quality attributes measured for these fruit. Although grafting with the interspecific rootstocks led to consistently small, but significant increases of fruit moisture (≈0.6%), flavor attributes such as total titratable acidity (TTA) and the ratio of soluble solids content (SSC) to TTA were not significantly altered. Among the antioxidants evaluated, ascorbic acid concentration was reduced by 22% in fruit from grafted plants, but significant effects were not evident for either total phenolics or antioxidant capacity as assayed by oxygen radical absorbance capacity (ORAC). Levels of carotenoids (lycopene, β-carotene, and lutein) were similar in fruit from grafted plants with hybrid rootstocks compared with non- and self-grafted controls. Overall, the seasonal differences outweighed the grafting effects on fruit quality attributes. This study showed that grafting with interspecific hybrid rootstocks could be an effective horticultural technique for enhancing fruit yield of tomato plants. Despite the modest reduction in ascorbic acid content associated with the use of these rootstocks, grafting did not cause major negative impacts on fruit composition or nutritional quality of fresh-market tomatoes.

Full access

Sharon Dea, Jeffrey K. Brecht, Maria Cecilia do Nascimento Nunes and Elizabeth A. Baldwin

The optimal ripeness stage for processing and marketing fresh-cut mangoes (Mangifera indica ‘Kent’) with best quality and maximum shelf life was determined. The initial ripeness stage selection was based on whole fruit firmness because this quality attribute was more reliable in predicting fresh-cut shelf life than flesh color or soluble solids content (SSC). Overall, the visual quality deteriorated differently and at different rates among ripeness stages. The shelf life, based on subjective visual evaluation, was 10, 7, and 5 days for ripeness stages corresponding to an average flesh firmness of 35, 30, and 25 N, respectively, and was mainly limited by desiccation and development of off-odor for the two firmer ripeness stages or symptoms of edge tissue damage and spoilage for the least firm stage. The slices from fruit with the highest initial firmness remained firmer during storage, had the lowest pH and SSC to titratable acidity (TA) ratio, and had the highest contents of volatile ketones and esters. The softest slices had the highest pH, SSC:TA ratio, and total ascorbic acid (TAA) content, as well as the lowest TA and highest volatile aldehyde and alcohol contents. Intermediate firmness slices had intermediate pH, SSC:TA ratio, color, and TAA content. Also, they had less volatile alcohols and aldehydes than slices from riper fruit but had similar content of esters as slices from the less ripe fruit. Therefore, based on the results from this study, an initial firmness of 30 N is recommended to process mangoes into fresh-cut slices because it assures the best quality and maximum shelf life based on textural, visual, and compositional attributes.