Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: J.B. Murphy x
Clear All Modify Search

Seed germination of spinach (Spinacia oleracea L.) is partially inhibited by a high germination temperature (35 °C). Tolerance of high germination temperatures varies widely depending on the variety used. We ascertained that seed germination of these spinach varieties was thermoinhibited at 35 °C and secondary dormancy was not induced as seeds germinated when transferred to optimum germination conditions (20 °C). Treatment with 99% oxygen and 10 ppm kinetin significantly increased germination of thermoinhibited varieties at 35 °C. During heat stress, all organisms produce heat shock proteins (HSPs), which may function as molecular chaperons, are possibly required for the development of thermotolerance, and may be crucial for cell survival during heat stress. Western blotting of SDS-PAGE gels using antibodies to various heat shock proteins indicated that spinach varieties with the highest degree of thermotolerance have higher levels of HSP expression than varieties with the lowest degree of thermotolerance during germination. These results suggest that thermotolerance could be further improved, either through a breeding program or possibly by genetic engineering.

Free access

Light is important in the production of phenolic compounds because key enzymes in phenolic biosynthesis are induced by light, and because products of photosynthesis are used in the synthesis of phenolic compounds. It is known that light intensity decreases with increasing depth in apple tree canopies. The objective of this experiment was to determine how leaf position on a limb affects the total foliar phenolic content. Leaves from `Stark Spur Supreme Red Delicious' on C6 and M26 rootstocks were collected on 28 July and 2 Aug. 1996. Each tree was divided into two sides, east and west. Each side was divided into 3 areas; exterior, middle, and interior. From each area, leaves were collected and PAR, SLW, assimilation, total N, and total phenolics were measured. Leaf position on a limb was a significant parameter for all of the measured variables. PAR, SLW, assimilation, total N, and total phenolics were highest in leaves at the exterior of the canopy. The total foliar phenolic content of the exterior canopy leaves was 20% higher than that found in the interior canopy leaves. There was a significant correlation between SLW and total phenolic content/cm2(r 2 = 0.77; P < 0.05). Assimilation may be a limiting factor in phenolics production in apple trees because of the correlation between assimilation and total phenolic content/cm2 (r2=0.56, P < 0.05).

Free access

The foliar phenolic content of 21 apple cultivars was evaluated. Ten leaves were sampled randomly from three positions on current-season terminal shoots. Shoots were divided as tip, middle, and basal positions. The phenolic content was determined by spectrophotometric method (390 nm) using diphenylboric acid 2-aminoethyl ester as the reagent and caffeic acid as standard. Cultivars varied significantly in phenolic content. `Stark Ultra Red' had the highest amount, and `Liberty' had the lowest amount. Significant variations in the phenolic content due to leaf position were observed. Phenolic content was highest in leaves from the tip position, and it decreased toward the basal portion of the shoot. Factors affecting the phenolic content of apple cultivars will be investigated to determine apple × insect interactions.

Free access