Search Results

You are looking at 11 - 20 of 34 items for

  • Author or Editor: J. Roger Harris x
Clear All Modify Search
Free access

Lisa E. Richardson-Calfee, J. Roger Harris and Jody K. Fanelli

Fundamental information regarding posttransplant root and shoot growth dynamics is needed to better understand transplant establishment. Seasonal patterns of root, shoot, and trunk growth of balled-and-burlapped and pot-in-pot (PIP) sugar maples (Acer saccharum Marsh.) transplanted at leaf drop (Nov. 2000), late fall (Dec. 2000), early spring (Mar. 2001), budbreak (Apr. 2001), or budset (July 2001) were measured and compared with nontransplanted field- and PIP-grown trees. All trees exhibited a pattern of maximum shoot extension, root growth, and trunk expansion in early May, late May, and early June, respectively. Maximum root growth was concurrent with early trunk expansion, both of which began when shoot growth was decreasing. Root growth was characterized by periods of abundant growth in late May and early June and less growth in summer and early fall. Transplanting at fall leaf drop, in late fall or spring, or at budbreak did not appear to radically disrupt the normal growth periodicity of sugar maple. However, transplanting at budset (summer) resulted in abundant root growth 11 weeks later than the period of maximum root growth in all other treatments. Our data indicate that similar amounts of root regeneration can be expected for irrigated July-transplanted trees as for trees transplanted in fall and spring. As well, our study provides evidence of root mortality during the winter and spring after the first posttransplant growing season. Although minimal root mortality was evident in nontransplanted field trees, substantial root mortality was evident in the nontransplanted PIP trees during winter and early spring.

Free access

J. Roger Harris, Jody Fanelli, Alex Niemiera and Robert Wright

Two experiments were conducted to test the effects of early root pruning on growth of pin oak (Quercus palustris Muenchh.). Experiment one tested the effect of radicle tip removal when radicles had reached 5, 10, or 15 cm below the substrate surface. Total root length was not affected by treatment, but root-pruned trees had more large-diameter lateral (primary lateral) roots than trees that were not root-pruned. The number of primary laterals increased if the radicle tip was removed at more shallow depths. Experiment two tested the effect of liner production in bottomless containers (roots air-pruned) of 5-, 10-, 15-, and 20-cm depths on subsequent growth in #2 (6-L) containers. Top and root growth was generally lowest in 5-cm-deep containers and highest in 10- or 15-cm-deep containers.

Free access

Anne-Marie Hanson, J. Roger Harris* and Robert Wright

Mountain laurel (Kalmia latifolia L.) is a common native shrub in the Eastern United States; however, this species can be difficult to establish in landscapes. Two experiments were conducted to test the effects of transplant season and container size on landscape establishment of Kalmia latifolia L. `Olympic Wedding'. In experiment one, 7.6-L (2-gal.) and 19-L (5-gal.) container-grown plants were planted into a simulated landscape (Blacksburg, Va., USDA plant hardiness zone 6A) in early Fall 2000 and in late Spring 2001. 19-L (5-gal.) plants had the lowest leaf xylem potential (more stressed) near the end of the first post-transplant growing season, and leaf dry weight and area were higher for spring transplants than for fall transplants. For spring transplants, 7.6-L (2-gal.) plants had the highest visual ratings, but 19-L (5-gal.) plants had the highest visual ratings for fall transplants three growing seasons after transplanting. 7.6-L (2-gal.) plants had the highest % canopy volume increase after three post-transplant growing seasons. In experiment two, 19-L (5-gal.) plants were transplanted into above-ground root observation chambers (rhizotrons) in early Fall 2000 and late Spring 2001. Roots of fall transplants grew further into the backfill than spring transplants at the end of one post-transplant growing season. Overall, our data suggest that smaller plants will be less stressed the first season after transplanting and will likely stand a better chance for successful establishment in a hot and dry environment. Fall is the preferred time to transplant since capacity for maximum root extension into the backfill will be greater than for spring transplants.

Free access

Lisa Richardson-Calfee, J. Roger Harris* and Jody Fanelli

Seasonal effects on transplant establishment of balled-and-burlapped (B&B) shade trees are not well documented. Early post-transplant root growth and above-ground growth over 3 years were therefore documented for November- and March-transplanted northern red oak (Quercus rubra L.) and willow oak (Q. phellos L.). Survival of red oak was 100% for both treatments. Survival of November- and March-transplanted willow oak was 67% and 83%, respectively. No new root growth was observed outside or within the root balls of either species upon excavation in January. However, new root growth was evident when subsamples were excavated the following April for November-transplanted trees of both species, indicating that root system regeneration of November-transplanted trees occurs in late winter and/or early spring, not late fall and/or early winter. November-transplanted red oak, but not willow oak, had grown more roots by spring bud break than March-transplanted trees. While height growth of willow oak was nearly identical between treatments after 3 years, November-transplants exhibited greater trunk diameter increase for all 3 years. Overall, season of transplant had little effect on height and trunk diameter increase of red oak, even though November-transplanted trees grew more roots prior to the first bud break following transplant. Among the willow oaks that survived, season of transplanting had little effect on height growth, but November transplanting resulted in greater trunk diameter increase. However, considering the mortality rate of November-transplanted willow oak, March may be a better time to transplant willow oak in climates similar to southwest Virginia.

Free access

Patricia R. Knight, J. Roger Harris and Jody K. Fanelli

Root severance during field harvesting alters the water status of a tree, resulting in water stress and reduced post-transplant growth. Two experiments, using Acer rubrum L. (red maple), determined the influence of root severance at harvest on sap flow and xylem embolism. Trees 1.5–1.8 m tall (4 years old) were utilized in the first experiment, and trees 1.2–1.5 m tall (2 years old) were utilized in the second. Sap flow sensors were installed on the 4-year-old trees prior to root severance and remained on the trees until 1 week after harvest. Within 1 day after root severance sap flow was reduced and remained lower than nontransplanted (control) trees for the remainder of the experiment. Leaf stomatal conductance (Cs) of transplanted trees 1 week after root severance was lower than that of control trees, but leaf water potentials (ψ) were similar. In the second experiment, sap flow was reduced relative to control trees within 2 h after root severance. Although Cs was reduced 4 hours after root severance, ψ was not. Embolism increased within 24 hours of root severance. These results indicate that root severance quickly induces increased levels of embolism, which is associated with reduced sap flow.

Free access

Matt Kelting, J. Roger Harris, Jody Fanelli and Bonnie Appleton

Humate-based products have been aggressively marketed as biostimulants that increase plant growth. Little data are available on their effect on tree establishment or their interaction with fertilizer and irrigation regimes. This experiment tested several types of biostimulants on posttransplant growth of Acer rubrum L. (red maple) and Crataegus phaenopyrum (Blume) Hara (Washington hawthorn) trees, both with and without irrigation and fertilization. Soil treatments were applied at planting as: 1) control (native backfill only); 2) compost (native backfill + yard-waste compost); 3) peat (native backfill + Canadian sphagnum peat); 4) granular humate, 100 g/tree; 5) granular humate, 200 g/tree; and 6) liquid humate +, a proprietary liquid mixture of humate, kelp extract, thiamine, and intermediate “metabolites.” Irrigation regime × soil treatment interaction was significant for red maple, but soil treatments did not increase height, stem diameter, top dry mass, or root length. For Washington hawthorn, soil treatments did not increase height, stem diameter, or root length, but top dry mass in all treatments as a group and in humate-treated trees in particular was greater than that of controls. Roots of peat-treated trees of both species were longer than those in other treatments. Granular humate applied at 200 g/tree increased total root length more than did 100 g/tree in Washington hawthorn but not in red maple. Fertilizing at planting with N at 14.5 g·m-2 had no effect on any parameter measured for either species.

Full access

Matt Kelting, J. Roger Harris, Jody Fanelli and Bonnie Appleton

Humate-based products have been aggressively marketed as biostimulants that increase plant growth. Little data are available on their effect on tree establishment or their interaction with fertilizer and irrigation regimes. This experiment tested several types of biostimulants on posttransplant growth of Acer rubrum L. (red maple) and Crataegus phaenopyrum (Blume) Hara (Washington hawthorn) trees, both with and without irrigation and fertilization. Soil treatments were applied at planting as: 1) control (native backfill only); 2) compost (native backfill + yard-waste compost); 3) peat (native backfill + Canadian sphagnum peat); 4) granular humate, 100 g/tree; 5) granular humate, 200 g/tree; and 6) liquid humate +, a proprietary liquid mixture of humate, kelp extract, thiamine, and intermediate “metabolites.” Irrigation regime × soil treatment interaction was significant for red maple, but soil treatments did not increase height, stem diameter, top dry mass, or root length. For Washington hawthorn, soil treatments did not increase height, stem diameter, or root length, but top dry mass in all treatments as a group and in humate-treated trees in particular was greater than that of controls. Roots of peat-treated trees of both species were longer than those in other treatments. Granular humate applied at 200 g/tree increased total root length more than did 100 g/tree in Washington hawthorn but not in red maple. Fertilizing at planting with N at 14.5 g·m-2 had no effect on any parameter measured for either species.

Free access

Marion J. Packett, Alex X. Niemiera, J. Roger Harris and Ronald F. Walden

Growers report that plants on gravel bed surfaces require more frequent irrigation compared to plastic surfaces. The objective of Expt. 1 was to determine if bed surface type influenced container environment and plant growth of azalea and Japanese holly plants on plastic- or gravel-covered beds. Measurements included bed, substrate, and plant canopy temperatures; evapotranspiration (ET), stem water potential, and plant widths also were determined. The objective of Expt. 2 was to determine the amount of water retained following irrigation and drainage for four pre-irrigation substrate water contents (230%, 208%, 185%, 162%; mass basis) on gravel or plastic bed surfaces. Containers on plastic or gravel beds were irrigated, drained for 1 hour, and the amount of water retained in the container substrate was determined. In Expt. 1, plastic bed surface temperatures (0730 to 1930 hr) were higher than for gravel. Container substrate temperatures on plastic were 1°C higher than gravel from 2300 to 0400 hr with no temperature differences from 0500 to 2300 hr. There were no treatment differences for other characteristics. In Expt. 2, containers on plastic retained 21%, 15%, 23%, and 16% more water than on gravel for the 230%, 208%, 185%, 162% pre-irrigation water content treatments, respectively. When containers are seated on plastic, the bottom drainage hole is sealed resulting in more water retention compared to gravel.

Free access

Brian E. Jackson, Robert D. Wright, Jake F. Browder, J. Roger Harris and Alex X. Niemiera

Recent interest in the use of wood substrates in horticulture crop production has justified the need for determining fertilizer requirements in these substrates compared with traditional pine bark (PB) and peatmoss substrates. The objective was to determine the response of japanese holly (Ilex crenata Thunb. ‘Compacta’) and azalea (Rhododendron obtusum Planck. ‘Delaware Valley’) grown in a pine tree substrate (PTS) (trade name WoodGro™) or milled PB to fertilizer rate. Pine tree substrate is produced from freshly harvested loblolly pine trees (Pinus taeda L.) that are delimbed, chipped, and ground in a hammer mill to a desired particle size. Japanese holly plants were grown in 2.8-L containers in the fall of 2005 and again in the spring of 2007 with the addition of azalea. Plants grown in PTS or PB were fertilized by incorporating Osmocote Plus fertilizer (15N–3.9P–10K) at rates of 3.5, 5.9, 8.3 or 10.6 kg·m−3 for japanese holly and 1.2, 3.5, 5.9, or 8.3 kg·m−3 for azalea. After 3 months, shoot dry weights were determined for japanese holly and azalea. Japanese holly root dry weights were determined for both experiments, and substrate CO2 efflux (μmol CO2 m−2·s−1) was measured on the treatments at the end of the experiment using a LI-6400 soil CO2 flux chamber. In 2005, japanese holly shoot dry weights of PTS-grown plants were comparable to plants grown in PB at the 8.3 kg·m−3 fertility rate, and shoot dry weights of PTS-grown plants were higher than PB at the 10.6 kg·m−3 rate. In 2007, japanese holly and azalea shoot dry weights of PTS-grown plants were comparable to PB plants at the 5.9 kg·m−3 fertilizer rate. Both japanese holly and azalea achieved shoot growth in PTS comparable to shoot growth in PB with ≈2.4 kg·m−3 additional fertilizer for PTS. Substrate CO2 efflux rates were higher in PTS compared with PB indicating higher microbial activity, thereby increasing the potential for nutrient immobilization in PTS.

Free access

Lisa E. Richardson-Calfee, J. Roger Harris, Robert H. Jones and Jody K. Fanelli

Root system regeneration after transplanting of large trees is key to successful establishment, yet the influences of different production systems and transplant timing on root growth remain poorly understood. Patterns of new root production and mortality were therefore measured for 1 year after transplanting landscape-sized Acer saccharum Marsh. (sugar maple). Trees were transplanted into root observation chambers (rhizotrons) from two production systems, balled-and-burlapped (B&B) and pot-in-pot (PIP), in November, December, March, April, and July and compared with non-transplanted trees. Although root production stopped in midwinter in all transplants and non-transplanted field-grown trees, slight wintertime root production was observed in non-transplanted PIP trees. Root mortality occurred year-round in all treatments with highest mortality in winter in the transplanted trees and spring and summer in the non-transplanted trees. Non-transplanted PIP trees had significantly greater standing root length, annual production, and mortality than non-transplanted field and transplanted PIP trees. For B&B trees, greatest standing length, production, and mortality occurred in the April transplant treatment. Production and mortality were roughly equal for non-transplanted trees, but production dominated early dynamics of transplanted trees. Overall, increases in root length occurred in all treatments, but the magnitude and timing of root activity were influenced by both production system and timing of transplant.