Search Results

You are looking at 11 - 16 of 16 items for

  • Author or Editor: J. Raymond Kessler x
Clear All Modify Search

Mini-watermelon [Citrullus lanatus (Thunb.)] cultivars Valdoria and Vanessa were evaluated at 20, 30, 40, or 50 days after anthesis to determine maturity at harvest. Fruit circumference, weight, ground spot color, and number of senescent tendrils were measured as external indicators for each watermelon. Soluble solids content (SS), pH, and SS:total acid ratio (SS:TA) of each watermelon were determined to provide an indication of internal maturity. Regression and Akaike Information Criterion fit statistics analyses were performed to determine significant relationships and best predictors for external indicators of internal maturity factors. In this study, external predictors were most closely linked to fruit pH rather than to SS or SS/TA. Of the external indicators tested, fruit weight, circumference, number of senescent tendrils, and International Commission on Illumination (CIE) b* color coordinate values of the ground spot were best related to fruit pH. According to the regression models, two completely senesced tendrils, a circumference of 53 cm, weight of 3 kg, and CIE b* coordinate ground spot value of 40 are each sufficient to predict maturity when pH is used as the internal indicator of maturity under the conditions of this experiment.

Free access

An experiment was conducted to determine the effects of banded phosphorus (P) applications at differing rates in irrigated and nonirrigated pecan (Carya illinoinensis) plots on P movement within the soil, P uptake and movement within pecan trees, and the yield and quality of nuts. On 20 Mar. 2015, P applications of 0 kg·ha−1 (0×), 19.6 kg·ha−1 (1×), 39.2 kg·ha−1 (2×), and 78.5 kg·ha−1 (4×) were administered to bands of triple superphosphate to randomly selected trees in nonirrigated and irrigated plots of a ‘Desirable’ orchard bordered by ‘Elliot’ trees. When P was applied at the 2× and 4× rates, the total soil test P decreased linearly by 35% and 54%, respectively, in nonirrigated plots and by 41% and 59%, respectively, in irrigated plots over the course of the experiment. There was no change in soil test P over time at the 0× rate for either irrigation regimen; however, at the 1× rate, soil test P decreased 44% in the irrigated plot but did not change in the nonirrigated plot. The largest linear decrease of the soil test P from the start of the experiment to the end of the experiment occurred in the top 0 to 7.6 cm. In contrast, soil test P at a depth of 15.2 to 22.9 cm decreased linearly by 23% in the nonirrigated plot, but it did not decrease over time in the irrigated plot. Increasing the P application rate increased foliar P quadratically in the nonirrigated plot, but only the 4× application rate increased foliar P compared with the 0× control. In the irrigated plot, foliar P concentrations decreased linearly from 2015 to 2017, and foliar P concentrations were not influenced by the P application rate. No differences in pecan yield or quality were observed in either irrigated or nonirrigated plots. Overall, P banding may not be the most sustainable way to increase foliar concentrations of P quickly or to maintain concentrations of the nutrient in the long term.

Free access

Fifty-seven herbaceous perennials were evaluated from July 1996 to October 1997 in USDA Hardiness Zone 8. Plants in this study generally performed better the first year after planting than the second year. Several selections did not reemerge the second year, though some natural reseeding occurred. Still other selections never fully recovered from the winter months or succumbed to stress in the summer. Plants that maintained an attractive foliage display while not in bloom and plants that had a high bloom rating during the bloom season are worth incorporating into a full sun perennial or mixed border in the southeastern United States. Performance of perennials in the landscape may vary from year to year as climatic conditions affect performance. Comparison of results from variety trials at other locations should help increase performance information reliability for perennial selection.

Full access

Relatively few herbicides are registered in Alabama or in the southeastern United States for use in annual hill plasticulture production of strawberries. Acquisition of 24(c) special local needs status for certain herbicides could make more of these chemistries available to the strawberry industry. These herbicides, especially when applied as tank mixes pose potential risks to strawberry plant growth and fruit yield. Special local needs status for these herbicides has been granted for other states, but more evaluation of these products in Alabama soils under plastic mulch is needed. The objective of this study was to assess tank mix applications of preemergence herbicides with different modes of action on plant growth, crop yield, and fruit size of ‘Camarosa’ strawberry. A study was conducted at the Chilton Research and Extension Center in Clanton, AL, in 2018 and 2019. Pendimethalin (3.5 L·ha–1) and S-metolachlor (1.6 L·ha–1) were evaluated for potential phytotoxicity in ‘Camarosa’ strawberry when applied alone or in tank mixes with napropamide (8.6 kg·ha–1), sulfentrazone (0.3 L·ha–1), or terbacil (0.42 L·ha–1) by comparing them to a nontreated control. At 18 weeks after planting, pendimethalin tank mixed with napropamide reduced plant dry weight by 33% compared with the control, but this reduction was not significant. Additionally, tank mixes of pendimethalin with sulfentrazone, napropamide, and terbacil reduced shoot dry weight by 43%, 52%, and 43%, respectively, compared with pendimethalin alone. Pendimethalin + napropamide tank mix reduced relative growth rate by 95% compared with the control between 6 and 18 weeks after planting. All treatments were similar to the control in marketable yield. Differences in plant growth parameters did not appear to affect yield by the end of the experiment. All single applied treatments along with S-metolachlor tank mixed with napropamide and sulfentrazone; pendimethalin tank mixed with sulfentrazone and terbacil appeared to be safe for direct application to strawberry planting beds covered in polyethylene mulch.

Open Access

Production of high tunnel tomatoes and snapdragons was evaluated over a 2-year period at the Wiregrass Experiment Station, in southeastern Alabama. `BHN 640', `Florida 91', `Sunleaper', and `Carolina Gold', were evaluated in early Spring 2004. Results indicated that `BHN 640' outperformed `Florida 91' and `Carolina Gold' in early production of high tunnel grown tomatoes. A late Fall 2005 study examined `BHN 640' and `Florida 91'. Results indicated that `BHN 640' was superior to `Florida 91' in total marketable fruit. Season extension of both spring and fall tomato production were accomplished. A planting date study was completed in the early Spring 2005. The following four planting dates were evaluated: 31 Jan., 17 Feb., 4 Mar., and 25. Mar 2005. Wind damage to the high tunnel caused some mortality; however, the two earliest planting dates (31 Jan. and 17 Feb. 2005) produced over 10 lbs. of marketable tomatoes per plant. These were both superior to the last planting date of 25 Mar 2005. Cut snapdragons were evaluated for suitable colored mulch (red, white, or blue) and varieties for summer (`Opus Yellow', `Opus Rose', `Monaco Red', and `Potomac Early White') and fall (`Apollo Purple', `Apollo Yellow', `Monaco Red', `Monaco Rose', and `Potomac Early Orange') production. Results indicated that inflorescence length was affected by the color of mulch. The red mulch had increased inflorescence length compared to the white in Summer 2005. The Fall 2005 study revealed that white mulch had longer inflorescence length than the red or blue mulch. Some varietal differences were observed. The `Apollo Purple' had longer stem lengths than all other varieties for the fall study. The summer study revealed that `Opus Yellow' had longer inflorescence lengths than all others but stem lengths were all similar.

Free access

The development of more cold-tolerant short-cycle banana cultivars has made subtropical production possible, but fruiting may be unreliable in colder margins, such as the coastal region of Alabama, as a result of cold winter temperatures and other suboptimal growing conditions. Thus, the objectives of this study were to determine plant growth parameters that predict flowering, and to evaluate vegetative and reproductive growth of Cavendish and non-Cavendish banana cultivars. Pseudostem circumference and the height-to-circumference ratio (HCR) for tall cultivars and HCR for medium cultivars exhibited linear or quadratic relationships when regressed to the number of days from planting to inflorescence emergence (DPE), and hence were the best predictors of inflorescence emergence. The banana cultivars Double, Grand Nain, Cardaba, Ice Cream, and Goldfinger demonstrated cropping potential by producing mature bunches in the cooler environment of the subtropics and currently offer the best possibilities for banana production in Alabama.

Free access