Search Results

You are looking at 11 - 19 of 19 items for

  • Author or Editor: J. Nienhuis x
Clear All Modify Search

Genetic differences among eleven cultivated and eight wild-type populations of North American ginseng (Panax quinquefolium L.) and four cultivated populations of South Korean ginseng (P. ginseng C.A. Meyer) were estimated using RAPD markers. Cultivated P. ginseng population samples were collected from four regions of S. Korea. Cultivated P. quinquefolium population samples were collected from three regions in North America: Wisconsin, the Southeastern Appalachian region of the United States, and Canada. Wild-type P. quinquefolium was collected from three states in the United States: Pennsylvania, Tennessee, and Wisconsin. Evaluation of germplasm with 10 decamer primers resulted in 100 polymorphic bands. Genetic differences among populations indicate heterogeneity. The genetic distance among individuals was estimated using the ratio of discordant bands to total bands scored. Multidimensional scaling of the relationship matrix showed independent clusters corresponding to the distinction of species, geographical region, and wild versus cultivated types. The integrity of the clusters was confirmed using pooled chi-square tests for fragment homogeneity.

Free access

To measure the effect of added Ca fertilizer on the Ca concentration of snap bean pods, four snap bean cultivars were grown during Summer 1996 and 1997 at Hancock, Wis. Fertilizer treatments consisted of 80 kg of Ca per hectare applied as Ca sulfate (CaSO4·2H2O) or Ca nitrate [Ca(NO3)2], and the control (no Ca applied. The experimental design was a randomized complete block with a factorial set of treatments (4 × 3). Calcium sulfate was applied at planting, whereas Ca nitrate was split applied four times at weekly intervals starting 1 week before flowering. Yield and Ca concentration in pods were determined. The statistical analysis showed no significant effect of Ca fertilizers on pod Ca concentration or yield. A strong cultivar effect was detected for both parameters measured. `Evergreen' (5.47 mg Ca per gram dry weight) had the highest pod Ca concentration and `Labrador' (4.10 mg Ca per gram dry weight) the lowest. No significant fertilizer × cultivar interactions were observed. Results for pod Ca concentration remained consistent, even when significant year effects were found for both parameters.

Free access

This study was designed to compare snap and dry beans (Phaseolus vulgaris L.) for pod Ca concentration, and to identify genetic resources that might be useful in breeding programs directed to increase Ca concentration in bean pods. Pods from eight snap bean and eight dry bean cultivars were evaluated for Ca concentration during 1995 and 1996 at Hancock, Wis. A randomized complete-block design was utilized with three replications in 1995 and six in 1996. Beans were planted in June and hand-harvested in August for both experiments. Soil Ca at planting time was 580 mg·kg–1 in 1995 and 500 mg·kg–1 in 1996. No additional Ca was added. Plots consisted of 10 plants each. At harvest, a pooled sample of 10 to 15 size no. 4 pods was collected from each plot. Atomic absorption spectrophotometry was used to determine Ca content. Significant differences (P ≤ 0.01) were detected among and within bean types (dry and snap). Although bean type × year interaction was nonsignificant, a strong year effect was observed (P ≤ 0.01). Snap beans (4.6 ± 0.7 mg·g–1 dry weight) had significantly higher pod Ca concentration than did dry beans (4.2 ± 0.6 mg·g–1 dry weight). Within snap beans, `Checkmate' had the highest pod Ca concentration (5.5 ± 0.3 mg·g–1 dry weight) and `Nelson' the lowest (3.8 ± 0.3 mg·g–1 dry weight). Within dry beans, `GO122' had the highest (5.1 ± 0.4 mg·g–1 dry weight) and `Porrillo 70' the lowest pod Ca concentration (3.6 ± 0.3 mg·g–1 dry weight). Six cultivars had pod Ca concentrations significantly (P ≤ 0.01) higher than the overall mean (4.4 ± 0.3 mg·g–1 dry weight).

Free access

To understand the genetics that control pod Ca concentration in snap beans, two snap bean (Phaseolus vulgaris L.) populations consisting of 60 genotypes, plus 4 commercial cultivars used as checks, were evaluated during Summers 1995 and 1996 at Hancock, Wis. These populations were CA2 (`Evergreen' × `Top Crop') and CA3 (`Evergreen' × `Slimgreen'). The experimental design was an 8×8 double lattice repeated each year. No Ca was added to the plants grown in a sandy loam soil with 1% organic matter and an average of 540 ppm Ca. To ensure proper comparison for pod Ca concentration among cultivars, only commercial sieve size no. 4 pods (a premium grade, 8.3 to 9.5 mm in diameter) were sampled and used for Ca extractions. After Ca was extracted, readings for Ca concentration were done via atomic absorption spectrophotometry. In both populations, genotypes and years differed for pod Ca concentration (P = 0.001). Several snap bean genotypes showed pod Ca concentrations higher than the best of the checks. Overall mean pod Ca concentration ranged from a low of 3.82 to a high of 6.80 mg·g-1 dry weight. No differences were detected between the populations. Significant year×genotype interaction was observed in CA2 (P = 0.1), but was not present in CA3. Population variances proved to be homogeneous. Heritability for pod Ca concentration ranged from 0.48 (CA2) to 0.50 (CA3). Evidently enhancement of pod Ca concentration in beans can successfully be accomplished through plant breeding.

Free access

Two commercial snap bean (Phaseolus vulgaris L.) cultivars (Hystyle and Labrador) that differ in pod Ca concentration were grown aeroponically to assess physiological factors associated with these differences. Xylem flow rate, Ca absorbed, and Ca concentration in sieve sap and pods (all and commercial size no. 4) were measured. Flow rate, Ca absorption and pod Ca concentration, but not sap Ca concentration, differed between cultivars, and this suggests that genetic variability in pod Ca concentration is caused mainly by differences in flow rate, rather than differences in sap Ca concentration. `Hystyle' showed 1.6 times greater flow rate, 1.5 times greater pod Ca concentration, and 1.7 times greater Ca absorbed than `Labrador'. Flow rate correlated positively with Ca absorbed (R = 0.90), Ca concentration in pods of size no. 4 (R = 0.55), and total pods (R = 0.65). Plant maturity influenced sap Ca concentration and Ca translocated increased as plant matured. These results provide evidence that flow rate differences may cause variability for pod Ca concentration in snap beans.

Free access

Stomatal density of pods and leaves were determined for six commercial snap bean cultivars (Phaseolus vulgaris L. `Evergreen', `Hystyle', Labrador', `Tenderlake', `Top Crop', and `Venture') grown at three planting dates, in an attempt to find morphological traits that could be related to cultivar differences in pod Ca concentration. Snap beans were planted three times at ≈1-week intervals beginning 15 June 1995, and harvested 59 to 62 days after planting. Stomatal counts were performed using a microscope linked to a video camera, and Ca concentration determinations were made using atomic absorption spectrophotometry. Calcium concentration and stomatal density of leaf tissue was higher than that of pods. Cultivar differences for pod Ca concentration (P = 0.001) and stomatal density (P = 0.001) were observed although cultivars with higher pod stomatal density did not necessarily result in higher pod Ca concentration. Calcium concentration and stomatal density for leaves did not differ among cultivars. Stomatal density and Ca concentration of pods were positively correlated (R 2 = 0.37), while pod maturity was negatively associated to both pod Ca concentration (R 2 = 0.93), and pod stomatal density (R 2 = 0.99). The effect of planting dates was absent in pod Ca concentration and significant in pod stomatal density.

Free access

Bacterial brown spot (BBS), incited by the bacterial pathogen Pseodomonas syringae pv. syringae is important disease of common bean. Phenotypic visual readings of infected areas and a leaf freezing assay estimating the population size of Pss on leaf surface were used for disease assessment for 2 years using 78 RI lines derived from Belneb RR-1 x A55 population grown in Wisconsin. The objectives of this research were to determine the genomic regions of QTL affecting the genetic variation of bacterial brown spot resistance in both assays over 2 years (1996 and 1998) and to determine the size of their genetic effects. In addition, we examined the consistency of detected QTL over environments. Three chromosomal regions associated with QTL for BBS resistance were identified in both assays in 1996 and one chromosomal region was consistently detected over 2 years.

Free access

Random amplified polymorphic DNA (RAPD) may have utility as genetic markers facilitating selection in ginseng crop improvement. This experiment determined chemical buffer and root tissue-type combinations that yield repeatable bands. The results allow further experiments using RAPD markers for estimating the genetic distance between ginseng landraces, selection for crop improvement, and extensive fingerprinting for use in determining the origin of tissue samples. This experiment determined mean band yields for all combinations of dry, fresh, and powdered root with cetyltrimethylammonium bromide, potassium/sodium ethyl xanthogenate, and urea buffers. The buffers were applied in replication to the tissue-types with other extraction protocol factors constant. Replications were amplified four times with four different primers using constant PCR and agarose gel electrophoretic protocols. Distinct bands were counted in each replication, and the summation of the replication repeats considered an observation. Least squares means for several response variables were analyzed. The most significant difference found was between buffers. The buffers ctab and urea were productive, and the pex was not. Significant difference was found when buffers were crossed with tissue. The applications of urea to fresh root, ctab to dry root, urea to dry root, and ctab to powdered root were productive. Based on these results we conclude 1) urea and ctab are productive when applied to all tissue-types, 2) dry root, which is easily collected and stored, yields sufficient DNA for analysis, and 3) powdered root, often the form of commercial products that might be tested for genetic origin, will yield sufficient DNA for analysis.

Free access

Randomly amplified polymorphic DNA (RAPD) molecular markers were used to construct a partial genetic linkage map in a recombinant inbred population derived from the common bean (Phaseolus vulgaris L.) cross PC-50 × XAN-159 for studying the genetics of bacterial disease resistance in common bean. The linkage map spanned 426 cM and included 168 RAPD markers and 2 classical markers with 11 unassigned markers. The seventy recombinant inbred lines were evaluated for resistance to two strains of common bacterial blight [Xanthomonas campestris pv. phaseoli (Smith) Dye] (Xcp). Common bacterial blight (CBB) resistance was evaluated for Xcp strain EK-11 in later-developed trifoliolate leaves and for Xcp strains, DR-7 and EK-11, in first trifoliolate leaves, seeds, and pods. One to four quantitative trait loci (QTLs) accounted for 18% to 53% of the phenotypic variation for traits. Most significant effects for CBB resistance were associated with one chromosomal region on linkage group 5 and with two regions on linkage group 1, of the partial linkage map. The chromosomal region (a 13-cM interval) in linkage group 5 was significantly associated with resistance to Xcp strains DR-7 and EK-11 in leaves, pods, and seeds. The regions in linkage group 1 were also significantly associated with resistance to both Xcp strains in more than one plant organ. In addition, a seedcoat pattern gene (C) and a flower color gene (vlae ) were mapped in linkage groups 1 and 5, respectively, of the partial linkage map. The V locus was found to be linked to a QTL with a major effect on CBB resistance.

Free access