Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Henry G. Taber x
Clear All Modify Search

Two root-zone temperatures (RZT) treatments, 21C and 34C were compared to evaluate their effects on growth and nutrient uptake for tomato (Lycopersicon esculatum Mill.), muskmelon (Cucumis melo L.), honey locust (Gleditsia triacanthos var. inermis Willd.), and geranium (Pelargonium hortorum L.H. Bailey). Plants were grown in a specialized hydroponic system with full strength Hoagland's No. 1 solution. RZT were initiated after a 7 day acclimation period and were held at the respective RZT continuously. Significant differences among the species were expected and noted for growth parameters of fresh wt., dry wt. of shoot and root, and elemental uptake. The 34C RZT, compared with 21C, reduced root length by 22, 51, and 57% for honey locust, tomato, and melon, respectively. P uptake rate dropped to 0 at 34C, as compared to 1.86 mg P/g root/day at 21C for melon. P uptake rate of the other crops was not affected by RZT.

Free access

Impatiens (Impatiens wallerana Hook. f.) is the most important annual bedding plant in the US, based on wholesale dollar volume. Production of high-quality plants requires optimization of the nutrition regimen during growth, especially the total nitrogen (N) concentration and the ratio of N sources. Our objective was to determine the N concentration and ratio of N sources that optimize bedding-plant impatiens growth and development. We used four N concentrations (3.5, 7, 10.5, and 14 mmol·L-1 of N) in factorial combination with four ratios of nitrate-N (NO3 --N) to ammonium-N (NH4 +-N) (4:0, 3:1, 1:1, and 1:3). Application of treatments began at day 30, and every-other-day applications were conducted until day 60. From day 60 to day 70 only deionized water was applied. N concentration and source displayed interation for most growth parameters. When N was supplied at a concentration ≤7 mmol·L-1, the NO3 --N to NH4 +-N ratio did not affect growth. When N was supplied at a concentration ≥10.5 mmol·L-1, a 1:3 NO3 --N to NH4 +-N ratio yielded the greatest shoot dry weight, shoot fresh weight, plant diameter, and number of flower buds per plant. With a NO3 --N to NH4 +-N ratio of 4:0, these growth parameters decreased. To produce high-quality, bedding-plant impatiens, N should be applied at NO3 --N to NH4 +-N ratios between 1:1 and 1:3 in combination with an N concentration of 10.5 mmol·L<-1 at each fertigation from day 30 to day 60 of the production cycle.

Free access

Ground water contamination resulting from continuous liquid fertilization technologies is a serious problem facing greenhouse growers in the United States. Rooted Dendranthema grandiflora Tzvelev. cultivar 'Iridon' cuttings were transplanted into 11 cm pots filled with a 50% peatmoss and 50% perlite (v/v) media containing 0.10, 0.21, 0.42, or 0.84 g N from a controlled release 12-10-17 plus minors fertilizer deposited directly below the transplanted cutting. Pots were assigned to a top-water or subirrigation treatment.

Subirrigation reduced the nitrate leachate concentration by as much as 250 ppm as compared with top-watering. Fertilizer N rate linearly decreased plant height in both of the irrigation treatments. Final dry weight of the shoot peaked at the 0.21 g N rate in both the irrigation treatments.

Free access

A major limiting factor in producing container-grown herbaceous perennials is low-temperature injury to cold sensitive roots and crowns during above ground winter storage. Growers and retailers of these plants understand the need for protection systems, yet specific recommendations are unavailable. The ability of several structureless systems to moderate temperature and protect 16 species of container-grown herbaceous perennials from low-temperature injury was investigated. Two light-excluding treatments consisting of 30 cm of straw between 2 layers of 4 mil white copolymer, and 18 cm deep in-ground beds protected with 1 layer of 4 mil white copolymer and 30 cm of woodchips provided the greatest moderation of winter low and early spring high temperatures but resulted in severe etiolation among test plants, A bonded white copolymer-microform overwintering blanket with translucent properties provided comparable plant survival, and prevented etiolated growth allowing plants to grow rapidly after uncovering, despite dramatic temperature extremes observed beneath this cover.

Free access