Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: Henry G. Taber x
Clear All Modify Search

Ground water contamination resulting from continuous liquid fertilization technologies is a serious problem facing greenhouse growers in the United States. Rooted Dendranthema grandiflora Tzvelev. cultivar 'Iridon' cuttings were transplanted into 11 cm pots filled with a 50% peatmoss and 50% perlite (v/v) media containing 0.10, 0.21, 0.42, or 0.84 g N from a controlled release 12-10-17 plus minors fertilizer deposited directly below the transplanted cutting. Pots were assigned to a top-water or subirrigation treatment.

Subirrigation reduced the nitrate leachate concentration by as much as 250 ppm as compared with top-watering. Fertilizer N rate linearly decreased plant height in both of the irrigation treatments. Final dry weight of the shoot peaked at the 0.21 g N rate in both the irrigation treatments.

Free access

Growth of tomato (Lycopersicon esculentum Mill.) plants decreases at root-zone temperatures (RZTs) >30 °C, but no research has been conducted on the effects of changes in root respiration on P acquisition at supraoptimal RZT. We monitored the changes every 3 to 5 days in root respiration, root surface phosphatase activity, and P acquisition of `Jet Star' tomato plants grown in Hoagland's no. 1 solution held at 25 and 36 °C RZT for 19 days. Root respiration rate in plants grown at 25 °C increased linearly from RZT initiation to day 12, but there was no difference in respiration between days 12 and 19. Root respiration at 36 °C, however, increased from RZT initiation to day 8 and then decreased. Shoot P concentration and root phosphatase activity for plants grown at 25 °C did not change during the experiment. Shoot P concentration for plants at 36 °C, however, linearly decreased over time, and root phosphatase activity linearly increased over time. Decreased shoot growth and demand for P along with decreased root respiration after day 8 probably resulted in the decreased P uptake and shoot P concentration in plants grown at 36 °C RZT.

Free access

A major limiting factor in producing container-grown herbaceous perennials is low-temperature injury to cold sensitive roots and crowns during above ground winter storage. Growers and retailers of these plants understand the need for protection systems, yet specific recommendations are unavailable. The ability of several structureless systems to moderate temperature and protect 16 species of container-grown herbaceous perennials from low-temperature injury was investigated. Two light-excluding treatments consisting of 30 cm of straw between 2 layers of 4 mil white copolymer, and 18 cm deep in-ground beds protected with 1 layer of 4 mil white copolymer and 30 cm of woodchips provided the greatest moderation of winter low and early spring high temperatures but resulted in severe etiolation among test plants, A bonded white copolymer-microform overwintering blanket with translucent properties provided comparable plant survival, and prevented etiolated growth allowing plants to grow rapidly after uncovering, despite dramatic temperature extremes observed beneath this cover.

Free access