Search Results

You are looking at 11 - 20 of 39 items for

  • Author or Editor: Gregory A. Lang x
Clear All Modify Search
Free access

William C. Mitchell and Gregory A. Lang

Fall application of 2-chloroethylphosphoric acid (ethephon) is known to delay spring budbreak in peach (Prunus persica). To study seasonal variation in peach response to dormancy-breaking plant bioregulators and their possible interaction with ethylene, peach shoots were cut in the field at various intervals during endodormancy. Shoots were dipped in the dormancy-breaking bioregulators hydrogen cyanamide (H2CN2, 100 mM) or gibberellic acid (KGA3, 130 μm), alone or in combination with 1.38 mM ethephon. Treated shoots were held in beakers of either tap water or 1 mM silver thiosulfate (STS), and placed in growth chambers with potassium permanganate traps, 12/12 h photoperiods and 21/26 C temperature regimes. Dormancy-breaking efficacy (apical budbreak at 21 days) of both bioregulators increased as endodormancy progressed. At all intervals, H2CN2, broke dormancy more effectively than KGA3. The addition of ethephon to H2CN2 application prior to any CU accumulation (20 Oct) had no effect on efficacy (80% budbreak), but its addition after accumulation of ∼50 CU (8 Nov) or ∼320 CU (14 Dec) reduced subsequent budbreak to 25% and 40%, respectively. The addition of ethephon to KGA3 applications reduced budbreak both prior to (27 Oct) and after (8 Nov) initial CU accumulation. STS in the beaker solution increased both the extent (27 Oct) and the rate (14 Dec) of KGA-induced budbreak The interaction of ethylene, bioregulator type, and endodormancy regulation will be discussed.

Free access

Matthew D. Whiting and Gregory A. Lang

Canopy fruit to leaf area ratios (fruit no./m2 leaf area, F:LA) of 7- and 8-year-old `Bing' sweet cherry (Prunus avium L.) on the dwarfing rootstock `Gisela 5' (P. cerasus L. × P. canescens L.) were manipulated by thinning dormant fruit buds. F:LA influenced yield, fruit quality, and vegetative growth, but there were no consistent effects on whole canopy net CO2 exchange rate (NCERcanopy). Trees thinned to 20 fruit/m2 LA had yield reduced by 68% but had increased fruit weight (+25%), firmness (+25%), soluble solids (+20%), and fruit diameter (+14%), compared to unthinned trees (84 fruit/m2). Fruit quality declined when canopy LA was ≈200 cm2/fruit, suggesting that photoassimilate capacity becomes limiting to fruit growth below this ratio. NCERcanopy and net assimilation varied seasonally, being highest during stage III of fruit development (64 days after full bloom, DAFB), and falling more than 50% by 90 DAFB. Final shoot length, LA/spur, and trunk expansion were related negatively to F:LA. F:LA did not affect subsequent floral bud induction per se, but the number of flowers initiated per bud was negatively and linearly related to F:LA. Although all trees were thinned to equal floral bud levels per spur for the year following initial treatment (2001), fruit yields were highest on the trees that previously had no fruit, reflecting the increased number of flowers initiated per floral bud. Nonfruiting trees exhibited a sigmoidal pattern of shoot growth and trunk expansion, whereas fruiting trees exhibited a double sigmoidal pattern due to a growth lag during Stage III of fruit development. Vegetative growth in the second year was not related to current or previous season F:LA. We estimate that the LA on a typical spur is only sufficient to support the full growth potential of a single fruit; more heavily-set spurs require supplemental LA from nonfruiting shoots. From these studies there appears to be a hierarchy of developmental sensitivity to high F:LA for above-ground organs in `Bing'/`Gisela 5' sweet cherry trees: trunk expansion > fruit soluble solids (Stage III) > fruit growth (Stage III) > LA/spur > shoot elongation > fruit growth (Stages I and II) > LA/shoot. Current season F:LA had a greater influence on fruit quality than prior cropping history, underscoring the importance of imposing annual strategies to balance fruit number with LA.

Free access

Gregory A. Lang and Robert G. Danka

Southern highbush (“low chill tetraploid”) blueberries are an earlier-ripening, self pollen-compatible alternative to rabbiteye blueberries. `Sharpblue', the first southern highbush cultivar planted on a commercial scale, has been shown to require cross-pollination for optimal fruit size and earliness of ripening. `Gulfcoast', a recently released cultivar for Gulf states growers of about latitude 30 to 32 N, differs in heritage from `Sharpblue', incorporating about 50% more self-compatible northern highbush germplasm. `Gulfcoast' fruit development after honey bee-mediated self- or cross-pollination with `Sharpblue' was similar in terms of set (85.5 vs. 82.2%), weight (1.26 vs. 1.18g), and seed number (32.8 vs. 33.6), respectively. Cross-pollination did not result in significantly earlier ripening. Thus, `Gulfcoast' appears to be more self-fertile than `Sharpblue'. Other closely-related cultivars are being examined to determine the genetic influence on potential for self-fruitfulness.

Free access

Robert G. Danka and Gregory A. Lang

`Gulfcoast' southern highbush blueberry (Vaccinium corymbosum × V. darrowi) plants were placed in 3 × 6 × 2.5 m net cages with one colony of honey bees per cage and one of three pollinizer treatments: “self (other `Gulfcoast' plants), “cross/highbush” (other southern highbush cultivars), or “cross/rabbiteye” (various rabbiteye blueberry cultivars). In addition to unlimited pollination, bee foraging was controlled on individual flowers by placing small bags over corollas after 0, 1, 5, or 10 visits. Fruit set, fruit weight, fruit development period, and seed number data were taken, as well as data to relate floral morphology to duration of bee foraging. All measures of fruiting increased significantly with increased bee visitation; the threshold for significant gains in production occurred between 1 and 5 visits. Ten visits generally provided a good approximation of unlimited pollination. Set, weight, and earliness of ripening was as good, or better, for fruit derived from rabbiteye pollen compared to fruit from self- or cross/highbush-pollination.

Free access

E. James Parrie and Gregory A. Lang

Pollen deposition on the stigmatic surface of blueberry pistils was studied with regard to maximum pollen load and stigmatic fluid production (stigma receptivity). Three hybrid southern highbush cultivars (Vaccinium corymbosum L. with V. darrowi Camp, V. ashei Reade, and/or V. angustfolium Aiton), two northern highbush cultivars (V. corymbosum), and one hybrid half-high cultivar (V. corymbosum with V. angustifolium) were selfand cross-pollinated with counted pollen tetrads until saturation of the stigmatic surface occurred. Stigmatic saturation generally required 200 to 300 tetrads and was characterized by the cessation of stigmatic fluid production and the inability to absorb further tetrads. The loss of stigmatic receptivity was irreversible. Cross-pollination resulted in cessation of stigmatic fluid production at lower levels of tetrad deposition than did self-pollination, suggesting a potential pollen-stigma recognition phenomenon. Northern highbush, half-high, and southern highbush cultivars required 7% to 10%, 12% to 17%, and 14% to 21%, respectively, more self-pollen to develop the stigmatic saturation condition. The potential relation of the pollenstigma phenomenon to self-incompatibility mechanisms is discussed.

Free access

Gregory A. Lang and E. James Parrie

Pollen from six southern highbush blueberry cultivars derived from Vaccinium corymbosum L. and one or more other species (V. darrowi Camp, V. ashei Reade, and V. angustifolium Aiton) was incubated on nutrient agar to determine tetrad viability, pollen tube growth rates, and incidence of multiple pollen tube germinations. `Avonblue' pollen had a significantly lower tetrad germination percentage than `Georgiagem', `Flordablue', `Sharpblue', `Gulfcoast', or `O'Neal', all of which had >90% viable tetrads. The in vitro growth rate of `O'Neal' pollen tubes was significantly higher than the growth rates of `Sharpblue' and `Georgiagem pollen tubes. Of those tetrads that were viable, more than two pollen tubes germinated from 83% and 91% of the `Gulfcoast' and `Sharpblue' tetrads, respectively, while only 11% of the `Flordablue' tetrads produced more than two pollen tubes. The total number of pollen tubes germinated per 100 tetrads ranged from 157 (`Flordablue') to 324 (`Sharpblue'), resulting in actual pollen grain viabilities ranging from 39% to 81%. Genetic differences in pollen vigor, as indicated by pollen viability, pollen tube growth rates, and multiple pollen tube germinations, may influence blueberry growers' success in optimizing the beneficial effects of cross-pollination on fruit development.

Free access

Matthew D. Whiting and Gregory A. Lang

To initiate photosynthetic studies of sweet cherry (Prunus avium L.) canopy architectures and cropping management under high light and temperature conditions (Yakima Valley, Wash.), we developed a whole-canopy research cuvette system with a variable airflow plenum that allowed different patterns of air delivery (in concentric circles around the trunk) into the cuvette. Air and leaf temperatures (Tair and Tleaf, respectively) were determined at four horizontal planes and four directional quadrants inside cuvette-enclosed canopies trained to a multiple leader/open-bush or a multiple leader/trellised palmette architecture. Air flow rate, air delivery pattern, and canopy architecture each influenced the whole-canopy temperature profile and net CO2 exchange rate (NCER) estimates based on CO2 differentials (inlet-outlet). In general, Tair and Tleaf were warmer (≈0 to 4 °C) in the palmette canopy and were negatively correlated with flow rate. The response of Tair and Tleaf to flow rate varied with canopy position and air delivery pattern. At a flow of 40 kL·min-1 (≈2 cuvette volume exchanges/min), mean Tair and Tleaf values were 2 to 3 °C warmer than ambient air temperature, and CO2 differentials were 15-20 μL·L-1. Tair and Tleaf were warmer than those in unenclosed canopies and increased with height in the canopy. Carbon differentials declined with increasing flow rate, and were greater in the palmette canopy and with a less dispersed (centralized) delivery. Dispersing inlet air delivery produced more consistent values of Tair and Tleaf in different canopy architectures. Such systematic factors must be taken into account when designing studies to compare the effects of tree architecture on whole-canopy photosynthesis.

Free access

James W. Olmstead and Gregory A. Lang

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the United States are susceptible to powdery mildew, caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. Recently, hybrid populations segregating for resistance to powdery mildew were developed by crossing a mildew-resistant sweet cherry selection, PMR-1, with the susceptible cultivars Bing, Rainier, and Van. Although segregation within these populations indicated a single gene was responsible for the powdery mildew resistance conferred by PMR-1, the gene action could not be determined. Therefore, a reciprocal cross between `Bing' and `Van' was made to determine the allelic state of the susceptible parents used previously. All progeny (n = 286) from this cross were susceptible to powdery mildew. This information, combined with results from previous segregation data, indicate the powdery mildew resistance gene is inherited in a dominant manner and is present in PMR-1 in the heterozygous allelic state. We have named this gene Pmr1. Furthermore, in combination with known pedigree information, we have been able to predict the susceptibility of more than 60 additional commercial and recently released sweet cherry cultivars.

Free access

Gregory A. Lang and Robert G. Danka

To study self- and cross-pollination effects on fruit development in southern highbush (mainly Vaccinium corymbosum L.) blueberries, `Sharpblue' plants were caged with honey bees (Apis mellifera L.) and other `Sharpblue' or `Gulfcoast' plants at anthesis. Ratios of pollinizer: fruiting flowers ranged from 2.1 to 4.5. Cross-pollination increased fruit size by ≈14% and seed count by 27% but did not influence fruit set. Overall, seed count decreased by 58% during the 30 days of harvest, but this did not directly affect fruit size. Seed count appeared to influence earliness of ripening as much as it influenced fruit size. Cross-pollination increased the harvest percentage of early-ripening fruits by ≈140% and of premium market fruits (those ≥ 0.75 g) by 13% and decreased the percentage of small fruits by 66%. Consequently, a 43% increase in premium early market crop value (nearly $5000/ha) resulted from optimizing `Sharpblue' cross-pollination.

Free access

Tiffany L. Law and Gregory A. Lang

Upright Fruiting Offshoots (UFO) is a novel high-density training system for sweet cherry (Prunus avium L.) that produces fruit on multiple vertical leaders (“offshoots”) arising from a cordon-like trunk. The promotion of sufficient upright shoot number and uniform shoot distribution during establishment are key to development of this training system. Trunk angle, meristem management (selective bud retention and removal), and cordon height at establishment were evaluated for influence on shoot number, shoot distribution, total shoot length, and early fruiting potential. At planting, trunk angles of 45° or 60° from the horizontal resulted in increased shoot growth compared with 30°, and also increased shoot distribution when bud selection was not imposed. A cordon height of 45 cm increased total shoot length by 20% compared with a 60-cm cordon height. Bud selection (retaining buds for optimal upright shoot distribution and removing all others) improved canopy development by reducing the number of shoots in the terminal third of the cordon and increasing the number of shoots in the basal and middle thirds compared with no bud selection. Bud selection reduced fruiting potential in the 2nd and 3rd years compared with unmanaged treatments, but subsequently surpassed those treatments in projected annual yield in Year 4 and cumulative yield in Year 5. Bud selection increased total and average shoot length, and improved distribution while moderating early crop load potential. Planting angle, cordon height, and bud selection significantly impact canopy establishment of UFO trees by affecting shoot number, length, and distribution.