Search Results
Salvia greggii (salvia) and Dalea frutescens (dalea) are two popular shrubs. However, little information is available on their drought tolerance. The objectives of this study were to investigate the effect of various degrees of water stress on growth and to characterize the dynamics of water relations to root substrate water content for developing best irrigation management. Salvia and dalea plants in 12-L plastic containers were grown in a greenhouse and pruned to one node at the base of the soft shoots for salvia or at the same height for dalea prior to the start of the experiment. There were three irrigation regimens: plants were irrigated daily (control), or irrigation was withheld until moderate or severe water stress signs exhibited. After several weeks of intermittent cyclic dry-down irrigation regimens, total shoot number per container was reduced by 40% to 50% for salvia and 35% to 40% for dalea. Average shoot length was reduced by 35% to 45% for salvia and 50% to 65% for dalea in moderate and severe stressed treatments compared to the control. Drought stress resulted in less shoot elongation and fewer new shoots in both species. To examine the relationship between plant water status and substrate water content, a dry down test was performed on five well-watered plants by withholding irrigation until midday water potential dropped to below –4 MPa. As substrate water contents in both species reached 8%, the predawn water potentials did not recover from the midday water potential of the previous day, indicating there was no available water in the substrate for roots to take up. The drought tolerance of these two species needs further study using various growing media.
Potato (Solanum tuberosum L. cv. Benimaru) plantlets were cultured under four lighting cycles (photoperiod/dark period: 16 h/8 h, 4 h/2 h, 1 h/0.5 h, and 0.25 h/0.125 h) photoautotrophically (without sugar in the medium), and photomixotrophically (with sugar in the medium) in vitro for 28 days. Simulations of time courses of CO2 concentration in the vessel (Ci) and dry weight accumulation of the plantlets cultured photoautotrophically were conducted using a previously developed model (Niu and Kozai, 1997). While underestimation and overestimation of time courses of Ci in some treatments were observed, the simulated results of Ci and dry weight accumulation of the plantlets generally agreed with the measured ones. The difference of net photosynthetic rate response to Ci throughout the culture period was examined between the plantlets cultured photoautotrophically and photomixotrophically. Quantitative relationship between daily net photosynthetic rate (daily net production) and vessel ventilation rate per plantlet was simulated under various CO2 levels outside the vessel for given sizes of potato plantlets cultured photoautotrophically in vitro to aid appropriate CO2 enrichment and vessel design in commercial micropropagation.
Salt tolerance of seven Texas Superstar® perennials [Malvaviscus arboreus var. drummondii (Turk’s cap), Phlox paniculata ‘John Fanick’ (‘John Fanick’ phlox), Phlox paniculata ‘Texas Pink’ (‘Texas Pink’ phlox), Ruellia brittoniana ‘Katie Blue’ (‘Katie Blue’ ruellia), Salvia farinacea ‘Henry Duelberg’ (‘Henry Duelberg’ salvia), Salvia leucantha (mexican bush sage), and Verbena ×hybrida ‘Blue Princess’ (‘Blue Princess’ verbena)] was evaluated in a greenhouse experiment. Plants were irrigated with a nutrient solution at electrical conductivity (EC) of 1.1 dS·m−1 (control) or a salt solution at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 8 weeks. ‘John Fanick’ and ‘Texas Pink’ phlox plants in EC 5 had severe salt foliage damage, while those in EC 10 were died. Mexican bush sage in EC 10 had severe salt foliage damage. Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena had minor foliar damage regardless of treatment. EC 5 reduced the shoot dry weight (DW) by 45% in ‘Texas Pink’ phlox and 11% to 18% in ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage, but did not impact the shoot DW of Turk’s cap and ‘John Fanick’ phlox. EC 10 further decreased the shoot DW of ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage plants by 32%, 29%, and 56%, respectively. EC 5 decreased leaf net photosynthesis (Pn) of ‘Texas Pink’ phlox and mexican bush sage, while EC 10 reduced Pn of all species except ‘Henry Duelberg’ salvia and ‘Blue Princess’ verbena. ‘Katie Blue’ ruellia and ‘Blue Princess’ verbena had relatively lower leaf Na concentration and ‘John Fanick’ phlox, ‘Texas Pink’phlox, and mexican bush sage had higher leaf Cl concentrations. In summary, Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena were the most tolerant perennials, and ‘John Fanick’ phlox, ‘Texas Pink’ phlox, and mexican bush sage were the least tolerant to salinity.
Drought-tolerant garden roses (Rosa spp.) are needed in arid and semiarid regions where irrigation water is scarce. The vast majority of garden rose cultivars are budded or grafted onto rootstocks and are seldom grown on their own roots. The objective of this study was to compare the growth and physiological responses of four rose rootstocks to drought stress. Rosa ×hybrida ‘Dr. Huey’, R. ×fortuniana, R. multiflora, and R. odorata grown in 12-L containers were well-irrigated throughout the experiment or were subjected to mild drought stress for five or six cycles, depending on rootstocks, over 10 weeks. Following the mild drought stress cycles, plants that received the mild drought treatment were subjected to a severe dry-down before termination of the experiment. In R. ×fortuniana, drought stress did not affect any growth parameter. Compared with the well-irrigated plants, shoot dry weight of ‘Dr. Huey’, R. multiflora, and R. odorata were reduced by 22%, 33%, and 38%, respectively, by the drought treatment. The final leaf area of R. multiflora and R. odorata was reduced by 42% and 59%, respectively, compared with the control plants. The final leaf area of ‘Dr. Huey’ was not influenced by the drought treatment. Root to shoot ratio in ‘Dr. Huey’ was unaffected, while that of R. multiflora and R. odorata increased as a result of the drought treatment. As substrate moisture content decreased, leaf relative water content (RWC) of all rootstocks decreased linearly, with differences in decreasing slope or intercept of the linear regression lines among rootstocks. Predawn leaf water potential during the dry-down began to decrease rapidly when substrate moisture content decreased to below 20% (25% in R. odorata) in ‘Dr. Huey’, R. ×fortuniana, and R. multiflora. Leaf net photosynthetic rate (Pn), transpiration rate (E) and stomatal conductance (gs) of all rootstocks decreased rapidly during the dry-down as substrate moisture content decreased from 25%. In ‘Dr. Huey’ and R. ×fortuniana, Pn, E, and gs were closely correlated with leaf RWC, while E and gs of R. odorata were not. Correlations between gas exchange rates (Pn, E, and gs) and leaf RWC in R. multiflora were weaker than those in ‘Dr. Huey’ and R. ×fortuniana. At low substrate moisture content (below 15%), Pn, E, and gs in R. odorata were lower than those in other rootstocks. Growth reduction was greatest in R. odorata, regardless of the least water deficit of the substrate, followed by R. multiflora and ‘Dr. Huey’. The results of this study suggest that R. ×fortuniana was the most tolerant and R. odorata was the least tolerant to drought stress.
Water shortages and poor water quality are critical issues in many areas of the world. With rapid increases in population and shortage of water supplies in urban areas, use of alternative water sources such as municipal reclaimed water and other sources of non-potable waters for irrigating landscapes is inevitable. A potential concern is the elevated salt levels in these alternative waters. This article briefly summarizes general information regarding alternative water sources and general responses of landscape plants to salinity stress. Methodology of screening and evaluating salt tolerance of landscape plants are discussed. Recent research results on salt tolerance of landscape plants and their physiological responses to salinity stress are reviewed. Like agricultural crops, a wide range of salt tolerance among landscape plants has been found. In addition to plant species, dominant salt type, substrate, irrigation method and management, and environmental conditions also affect plant responses to salinity stress. A number of mechanisms of salinity tolerance have been observed among landscape species, including restriction of ion uptake, selective ion uptake, and tolerance to high internal concentrations of sodium and/or chloride.
The responses of garden roses to irrigation water with elevated salts are unknown. Two experiments were conducted to evaluate the relative salt tolerance of 13 self-rooted rose cultivars by irrigating the plants with nutrient solutions at an electrical conductivity (EC) of 1.4 dS·m−1 (control) or nutrient saline solutions at EC of 3.1, 4.4, or 6.4 dS·m−1. In Expt. 1, ‘Belinda’s Dream’, ‘Caldwell Pink’, ‘Carefree Beauty’, ‘Folksinger’, ‘Quietness’, and ‘Winter Sunset’ plants were grown in a greenhouse from 13 Aug. to 21 Oct. (10 weeks). Shoot dry weight of all cultivars decreased as EC of irrigation water increased. ‘Winter Sunset’ was most sensitive among these cultivars to salt stress followed by ‘Carefree Beauty’ and ‘Folksinger’ with severe leaf injury at EC of 3.1 dS·m−1 or higher or death at EC of 6.4 dS·m−1. No visual damage was observed in ‘Belinda’s Dream’ or ‘Caldwell Pink’, regardless of the salinity level. In Expt. 2, ‘Basye’s Blueberry’, ‘Iceberg’, ‘Little Buckaroo’, ‘The Fairy’, ‘Marie Pavie’, ‘Rise N Shine’, and ‘Sea Foam’ plants were grown in the greenhouse from 29 Sept. to 16 Nov. (7 weeks) and irrigated with the same nutrient or nutrient saline solutions. Salinity treatment did not affect shoot dry weight of ‘Basye’s Blueberry’, ‘Little Buckaroo’, ‘Sea Foam’, and ‘Rise N Shine’. Shoot dry weight of ‘Iceberg’, ‘The Fairy’, and ‘Marie Pavie’ decreased as EC of irrigation water increased. No or little visual damage was observed in ‘Little Buckaroo’, ‘Sea Foam’, and ‘Rise N Shine’. Leaf tip burns were seen in ‘Iceberg’, ‘Marie Pavie’, ‘Basye’s Blueberry’, and ‘The Fairy’ at EC 6.4 of dS·m−1. Generally, these symptoms were less severe than those observed in Expt. 1, probably attributable partially to the shorter treatment period. Whereas shoot Na+ and Cl– varied greatly among the rose cultivars, the shoot concentrations of Ca2+, K+, and Mg2+ did not. Generally, salinity-tolerant cultivars had higher shoot Na+ and Cl– concentrations. In summary, in Expt. 1, ‘Belinda’s Dream’ was the most tolerant cultivar, whereas ‘Winter Sunset’ was the least tolerant followed by ‘Carefree Beauty’. In Expt. 2, ‘Iceberg’, ‘Marie Pavie’, and ‘The Fairy’ were less tolerant to salinity as compared with other cultivars, although the differences were small.
Green light penetrates deeper into the plant canopy because of its high transmittance and reflectance, and may potentially increase light interception and whole-canopy photosynthesis, whereas red and blue light is absorbed primarily by upper leaves. Moreover, green light induces shade avoidance responses and regulates secondary metabolism in plants. In this study, we investigated the effects of substituting partial red and/or blue light with green light on plant growth and development in basil (Ocimum basilicum) ‘Improved Genovese Compact’ (green) and ‘Red Rubin’ (purple) plants. There were four treatments: one combined red and blue (R&B) light treatment, R76B24 [the proportion of red (R) and blue (B) light was 76% and 24%, respectively]; and three green (G) light treatments—R44B24G32, R74B16G10, and R42B13G45—with green light proportions of 32%, 10%, and 45%, respectively. The experiment was conducted in a growth room and the photosynthetic photon flux density (PPFD) of all treatments was set at 220 μmol·m−2·s−1 with a 16-h photoperiod. Plants were subirrigated as needed using a nutrient solution with an electrical conductivity (EC) of 2.0 dS·m−1 and a pH of 6.0. The net photosynthetic rate (Pn) in lower leaves was unaffected by green light treatments in green basil plants, whereas in purple basil plants it increased by 59% and 45% under treatments R44B24G32 and R74B16G10, respectively, compared with the combined R&B light. In green basil plants, treatments R44B24G32 and R42B13G45 induced stem elongation, but green light treatments showed no effects on petiole elongation, leaf expansion, leaf thickness, or plant yield. In purple basil plants, treatments R44B24G32 and R42B13G45 induced stem elongation and decreased leaf thickness and plant yield, but only the R42B13G45 treatment induced petiole elongation, and green light treatments showed no effects on leaf expansion. Concentrations of anthocyanin, phenolics, and flavonoids, and antioxidant capacity in green basil leaves showed no differences between treatments R76B24 and R44B24G32, but decreased under treatments R74B16G10 and R42B13G45. Concentrations of phenolics and flavonoids, and antioxidant capacity in purple basil leaves showed no differences between treatments R76B24 and R74B16G10, but decreased under treatments R44B24G32 and R42B13G45. Combining plant yield, nutritional values, and the working environment for growers, a white light with low green light proportion (≈10%) is recommended for basil production in a controlled environment.
Lettuce (Lactuca sativa L. cv. Summer-green) plug transplants were grown for 3 weeks under 16 combinations of four levels (100, 150, 200, and 300 μmol·m-2·s-1) of photosynthetic photon flux (PPF), two photoperiods (16 and 24 h), and two levels of CO2 (400 and 800 μmol·mol-1) in growth chambers maintained at an air temperature of 20 ±2 °C. As PPF increased, dry mass (DM), percent DM, and leaf number increased, while ratio of shoot to root dry mass (S/R), ratio of leaf length to leaf width (LL/LW), specific leaf area, and hypocotyl length decreased. At the same PPF, DM was increased by 25% to 100% and 10% to 100% with extended photoperiod and elevated CO2 concentration, respectively. Dry mass, percent DM, and leaf number increased linearly with daily light integral (DLI, the product of PPF and photoperiod), while S/R, specific leaf area, LL/LW and hypocotyl length decreased as DLI increased under each CO2 concentration. Hypocotyl length was influenced by PPF and photoperiod, but not by CO2 concentration. Leaf morphology, which can be reflected by LL/LW, was substantially influenced by PPF at 100 to 200 μmol·m-2·s-1, but not at 200 to 300 μmol·m-2·s-1. At the same DLI, the longer photoperiod promoted growth under the low CO2 concentration, but not under the high CO2 concentration. Longer photoperiod and/or higher CO2 concentration compensated for a low PPF.
Wildflowers are good candidates for water-wise landscapes because many of them are drought-tolerant after establishment. Little information is available regarding whether these herbaceous wildflowers are tolerant to salt stress. Container experiments were carried out in a greenhouse and a shadehouse under semiarid climate conditions to investigate the salt tolerance of six native wildflowers: Salvia farinacea (mealy cup sage), Berlandiera lyrata (chocolate daisy), Ratibida columnaris (Mexican hat), Oenothera elata (Hooker’s evening primrose), Zinnia grandiflora (plains zinnia), and Monarda citriodora (lemon horsemint). In the greenhouse experiment, mealy cup sage, Hooker’s evening primrose, and plains zinnia were irrigated with a saline solution with an electrical conductivity (EC) of 1.5 (control, nutrient solution), 2.8, 4.1, 5.1, or 7.3 dS·m−1 for 45 days. All plants survived except for plains zinnia at EC of 7.3 dS·m−1. Shoot dry weights decreased as EC of irrigation water increased for all three species. In the shadehouse experiment (second year), plants of all species (plains zinnia was not included) were irrigated with saline solutions at EC of 0.8 (control, tap water), 2.8, 3.9, 5.5, or 7.3 dS·m−1 for 35 days. Plants were fertilized with slow-release fertilizer in the shadehouse experiment. After 5 weeks of treatment, all plants of lemon horsemint in the elevated salinity treatments, regardless of EC levels, were dead. The visual foliar salt damage rating was lowest for lemon horsemint. Chocolate daisy had low survival percentages and low foliar ratings at EC of 5.5 dS·m−1 and 7.3 dS·m−1. For the other three species, survival percentages were 80% and 90% at EC of 7.3 dS·m−1. Hooker’s evening primrose and mealy cup sage had similar low foliar visual ratings at EC of 7.3 dS·m−1, whereas Mexican hat plants had high foliar visual ratings regardless of salinity treatment. All species had similar high uptake of Na+ in shoots, whereas Hooker’s evening primrose had slightly higher Cl− concentrations compared with other species. Based on these results, lemon horsemint was most sensitive to salinity stress followed by chocolate daisy. Hooker’s evening primrose and mealy cup sage were moderately tolerant and may be irrigated with low salinity water at EC of less than 3.9 dS·m−1. Mexican hat was the most tolerant among the six species.
As high-quality water supply becomes limited in many regions of the world, alternative water sources are being used for irrigating urban landscapes. Therefore, salt-tolerant landscape plants are needed. Two greenhouse experiments were conducted to screen the salt tolerance of Zinnia marylandica (‘Zahara Coral Rose’, ‘Zahara Fire’, ‘Zahara Scarlet’, ‘Zahara Starlight’, ‘Zahara White’, and ‘Zahara Yellow’) and Z. maritima ‘Solcito’. In Expt. 1, plants were subirrigated with nutrient or saline solutions at electrical conductivity (EC) at 1.4 (base nutrient solution, control), 3.0, 4.2, 6.0, or 8.2 dS·m−1 for 4 weeks, whereas in Expt. 2, plants were surface-irrigated with the same nutrient or saline solutions for 4 weeks. In Expt. 1, all plants, regardless of cultivar, died by the end of the treatment at EC 6.0 and EC 8.2 as a result of high salinity in the root zone. Plants became shorter and more compact as EC of irrigation water increased. Shoot dry weight of all cultivars in EC 4.2 was reduced by 50% to 56% compared with that of the control. Shoot Na+ and Cl– accumulated excessively as salinity increased in the irrigation water, whereas Ca2+, Mg2+, and K+ did not change substantially. In Expt. 2, mortality varied with cultivar and treatment. Similar to Expt. 1, growth reduction resulting from elevated salinity across cultivars was found. Therefore, it is concluded that zinnia cultivars used in this study are sensitive to salinity and should not be planted in areas with high soil salinity or when alternative waters with high salinity may be used for irrigation.