Search Results

You are looking at 11 - 20 of 26 items for

  • Author or Editor: Gene E. Lester x
Clear All Modify Search
Free access

Gene E. Lester and Michael A. Grusak

Muskmelon senescence is directly associated with a decline in hypodermal mesocarp membrane integrity and its Ca concentration, but infusing Ca into melons has been a problem. Fully ripened and abscised hybrid honeydew [Cucumis melo L. (Inodorus Group) `Honey Brew'] and netted muskmelon [Cucumis melo L. (Reticulatus Group) `Explorer'] fruit were submerged (dipped) 20 min at 25 ± 3 °C in a solution containing a Ca-chelate, a Mg-chelate, a combination of both chelates, or no mineral chelate. Following 10 or 24 days of cold storage (4 °C for `Explorer' and 10 C for `Honey Brew'), fruit were analyzed for mineral content and various senescence-related parameters. Abscised `Honey Brew' fruit dipped in either Ca-chelate or (Ca+Mg)-chelate and abscised `Explorer' fruit dipped in (Ca+Mg)-chelate, followed by 10 days cold storage, had hypodermal mesocarp Ca concentrations of at least 6.0 mg·g-1 dry weight. Maintaining hypodermal mesocarp tissue Ca concentrations at this level during postharvest storage, especially for fully ripe `Honey Brew' fruit, maintained membrane integrity and fruit firmness, and extended storage life 2.4-fold (i.e., to 24 days). The senescence regulatory effect of postharvest Ca-chelate treatments on abscised `Explorer' was highly variable, compared to `Honey Brew', which appeared to be due to the surface netting interfering with movement of Ca into the hypodermal mesocarp. Thus, postharvest Ca-chelate application to abscised `Honey Brew' fruit could delay fruit senescence in commercial storage, and open up new markets for fully ripened honeydew melons.

Full access

Gene E. Lester and Michael A. Grusak

Commercially grown honey dew fruit [Cucumis melo (Inodorus group)] typically are harvested before abscission because fruit cut unripe have a longer storage life than fully ripe fruit. However, because fully ripe fruit contain higher concentrations of soluble solids (predominantly as sugars), an attribute that increases their preference among consumers, methods are being explored to extend the storage life of fully ripe fruit. In this study, fully abscised honey dew fruit were evaluated for tissue attributes and consumer preference following postharvest dipping in either chelated or nonchelated calcium (Ca) solutions. Calcium sources were an amino acid-chelated Ca, ethylene-diamine tetraacetic acid (EDTA)-chelated Ca, or calcium chloride (CaCl2), with each provided at three different rates. Fruit were evaluated at harvest, and after 14 or 22 days commercial storage. Evaluations were peel surface changes (color and disorders), hypodermal-mesocarp tissue Ca concentration, flesh firmness, soluble solids concentration, and consumer preference of the edible flesh. Peel color became yellowed and lighter during storage for all fruit, with higher Ca rates resulting in more intensely yellowed fruit. Hypodermal-mesocarp tissue Ca concentration was 0.90 mg·g-1 of fresh weight (900 ppm) at harvest, and declined in all fruit by 22 days storage. Peel disorders (disease and spotting) were none to slight for all fruit by 14 days storage, but by 22 days storage disease incidence ranged from none to severe, depending on the Ca source and rate. Fruit firmness declined in all fruit throughout storage, with the smallest declines measured in fruit treated with the amino acid-chelated Ca. Soluble solids concentration of fully ripe fruit was 12.3% at harvest, and showed either no decline or slight declines with storage among the treatments. Consumer preference was highest for freshly harvested fruit, but fruit were desirable even after 22 days storage across all treatments. Postharvest application of Ca at ≤0.16 m Ca in an amino acid-chelated form, versus EDTA-chelated Ca or CaCl2, slowed honey dew melon senescence so that after 22 days of commercial and retail storage the fruit were of high marketable quality, and there was no detrimental effect on consumer preference for the edible flesh.

Free access

Bruce D. Whitaker and Gene E. Lester

Increases in phospholipase D (PLD) and lipoxygenase (LOX) activities are thought to play a key role in senescence of mesocarp tissues in muskmelon fruit. We have cloned and characterized two full-length cDNAs, CmPLDα and CmLOX1, encoding PLDα and LOX proteins in honeydew melon (Cucumis melo L. Inodorus Group). Levels of expression of the corresponding genes were determined by semi-quantitative RT-PCR in developing and mature fruit mesocarp tissues (20–60 d after pollination; DAP), and in roots, leaves, and stems from 4-week-old and flowers from 6-week-old plants. The coding regions of CmPLDα1 and CmLOX1 cDNAs are, respectively, 2427 and 2634 nucleotides long, encoding proteins 808 and 877 amino acids in length. CmPLDα1 is most similar to PLDα genes in castor bean, cowpea, strawberry, and tomato (77% nucleotide identity), and is the first cucurbit PLD gene cloned. CmLOX1 has 94% nucleotide identity to a cucumber LOX gene expressed in roots and 80% identity to cucumber cotyledon lipid body LOX. Transcript of CmPLDα1 was much more abundant than that of CmLOX1, but relative levels of transcript in the various organs and tissues were similar for the two genes. Expression was highest in roots, flowers, and fruit mesocarp tissues. CmPLDα1 expression in fruit was high throughout development, although maximum levels occurred at 50 and 55 DAP, respectively, in middle and hypodermal mesocarp. CmLOX1 expression was generally higher in middle than in hypodermal mesocarp with maximum transcript levels at 55 and 50 DAP, respectively. Overall, the patterns of expression of CmPLDα1 and CmLOX1 are consistent with a model in which their encoded enzymes act in tandem to promote or accelerate senescence in fruit mesocarp tissues.

Free access

Gene E. Lester and Kevin M. Crosby

Two important chemicals and an essential mineral (phytonutrients) for human health and well-being are ascorbic acid, 5-methyl-tetrahydrofolic acid (folic acid) and potassium. The influence of cultivar, fruit size, soil type and year on these compounds in [Cucumis melo L. (Inodorous Group)] was determined. Fully mature (abscised) commercial size fruit: 4, 5, 6, 8, and 9 (fruit/0.031 m3 shipping box) from three commercial cultivars: Mega Brew, Morning Ice, and TAM Dew Improved (TDI); and one experimental hybrid `TDI' × `Green Ice' were grown on both clay loam and sandy loam soils. Total ascorbic acid and folic acid content increased with an increase in fruit size up to a maximum (size 6 or 5), then decreased with further fruit size increase. Total ascorbic acid and folic acid content for most fruit sizes were higher when grown on clay loam versus sandy loam soils. The experimental hybrid compared to the commercial cultivars contained generally higher total ascorbic acid levels and significantly higher folic acid levels regardless of fruit size or soil type. Free ascorbic acid and dehydroascorbic acid contents were generally higher from clay loam versus sandy loam soils and in the experimental line versus the commercial cultivars. However, free ascorbic acid content was high in small fruit and remained unchanged with an increase in fruit size until size 6 or 5 then significantly decreased; while dehydroascorbic acid content linearly increased with an increase in fruit size. Potassium content averaged 1.7 mg·g-1 fresh weight for each line and did not significantly differ due to fruit size, but did for soil type and year. Analyses of variance for the phytonutrients assayed demonstrated that cultivar (genetics) always was very highly significant (P = 0.001), whereas, soil and year (environment) were not.

Free access

Gene E. Lester and Bruce D. Whitaker

Postharvest gamma-irradiation of melons at low dosage has been reported to extend shelf life. This study assessed how irradiation alters the structure and function of plasma membrane (PM) from hypodermal-mesocarp tissue. Administration of gamma rays (1 kGy at 0.017 kGy/min) to mature melon (Cucumis melo L.) fruit caused a 14% drop in H+-ATPase activity within 4 h. Total protein content did not differ in PM from non-irradiated (NIR) vs. irradiated (IR) fruits. Following storage (7 days at 7C then 3 days at 21C), H+-ATPase activity was ≈10% to 20% lower in PM from both groups of fruit, with no difference between the two. Total PM protein had declined by 34% and 49% in IR and NIR fruits, respectively. After irradiation, the phospholipid to protein ratio (PL:protein) was substantially higher in PM from IR fruit (0.67 vs. 0.58 in NIR). With storage, PL:protein dropped to 0.52 in NIR fruit PM, but changed little (0.65) in IR fruit PM. These results may indicate that irradiation stimulates PL synthesis or inhibits PL catabolism. Further analyses of PM lipid content and composition are underway.

Free access

James R. Dunlap, Sarah E. Lingle and Gene E. Lester

Postharvest ethylene production and ACC levels were determined in netted muskmelon fruits (Cucumis melo L. var. reticulatus `Magnum 45') exposed to temperature extremes by heating for 3 hr at 45C and/or storage at 4C. The possibility of using seal-packaging to protect the fruit against temperature-induced changes in ethylene production was examined by wrapping melons before treatment with a high-density polyethylene (HDPE) shrink-film. Ethylene production measured in fruit immediately after heating or removal from refrigeration was only 30% of the level determined before treatment, and continued to decline during refrigerated storage. However, the concentration of ACC in these same tissues remained constant or even increased slightly during storage. Wrapping fruit in HDPE film had no effect on the tissue concentrations of ACC or capacity for ethylene synthesis. In contrast to initial measurements, heated or refrigerated fruit held at room temperature (25C) for 24 hr produced ethylene at rates that equalled or exceeded the levels for freshly harvested fruit. These results strongly suggest that temperature-imposed restrictions on ethylene synthesis by netted muskmelon fruit are reversible and occur at the step responsible for converting ACC to ethylene via EFE rather than in the synthesis of ACC. Chemical names used: 1-aminocyclopropane-1-carboxylic acid (ACC).

Free access

Robert A. Saftner*, Judith A. Abbott and Gene E. Lester

New fresh-cut melon products prepared from orange-fleshed honeydews have recently become available in retail markets. We compared fresh-cut chunks of orange-fleshed honeydew (`Temptation' and four breeding lines), green-fleshed honeydew (`Honey Brew'), and cantaloupe (`Cruiser'). All genotypes had similar respiration and ethylene production rates and soluble solids contents: genotype means for soluble solids contents were between 9.4% and 10.1 %. Five hundred untrained consumers preferred the flavor, texture, and overall eating quality of the orange honeydews to the green cultivar, with `Temptation' scoring highest. `Temptation' chunks were less firm at the time of processing and after 12 days storage than chunks prepared from all other genotypes. The color of orange-fleshed honeydew chunks was intermediate between that of cantaloupe and green-fleshed honeydew and the color was maintained during 12 days storage. Total aromatic volatiles from juice extracts of orange-fleshed honeydew chunks was 1.2 to 4.7 times higher than that of green-fleshed honeydew extracts and volatiles from cantaloupe was >4.8 fold greater than extracts from `Temptation' and >9.3 fold higher than that of other honeydew extracts. Many individual volatiles were identical in cantaloupe and honeydews; however, honeydew genotypes, particularly the orange-pigmented types, were distinctive from cantaloupe in having relatively high levels of various nonenyl and nonadienyl acetates of uncharacterized aromas. The results indicate that `Temptation' and other orange-fleshed honeydews are a promising new melon type for fresh-cut processing.

Free access

Gene E. Lester, John L. Jifon and Gordon Rogers

Muskmelon [Cucumis melo L. (Reticulatus Group)] fruit sugar content is directly related to potassium (K)-mediated phloem transport of sucrose into the fruit. However, during fruit growth and maturation, soil fertilization alone is often inadequate (due to poor root uptake and competitive uptake inhibition from calcium and magnesium) to satisfy the numerous K-dependent processes, such as photosynthesis, phloem transport, and fruit growth. Experiments were conducted during Spring 2003 and 2004 to determine if supplemental foliar K applications during the fruit growth and maturation period would alleviate this apparent inadequate K availability in orange-flesh muskmelon `Cruiser'. Plants were grown in a greenhouse and fertilized throughout the study with a soil-applied N-P-K fertilizer. Flowers were hand pollinated and only one fruit per plant was allowed to develop. Starting at 3 to 5 days after fruit set, and up to 3 to 5 days prior to fruit maturity (full slip), entire plants, including the fruit, were sprayed with a glycine amino acid-complexed potassium (potassium metalosate, 24% K) solution, diluted to 4.0 mL·L-1. Three sets of plants were sprayed either weekly (once per week), biweekly (once every 2 weeks) or not sprayed (control). Fruit from plants receiving supplemental foliar K matured on average 2 days earlier than those from control plants. In general, there were no differences in fruit maturity or quality aspects between the weekly and biweekly treatments except for fruit sugar and beta-carotene concentrations, which were significantly higher in the weekly compared to the biweekly or control treatments. Supplemental foliar K applications also resulted in significantly firmer fruit with higher K, soluble solids, total sugars, ascorbic acid (vitamin C) and beta-carotene concentrations than fruit from control plants. These results demonstrate that carefully timed foliar K nutrition can alleviate the developmentally induced K deficiency effects on fruit quality and marketability.

Full access

Gene E. Lester, Robert A. Saftner and D. Mark Hodges

Orange-fleshed honey dew (Cucumis melo L., Inodorus group) fruit are known for having superior food-safety, food-quality, and fruit-marketability attributes compared with orange-fleshed netted muskmelon (C. melo, Reticulatus group) and to green-fleshed honey dew (C. melo, Inodorus group) fruit. However, little is known about the production market attributes and postharvest quality comparisons of the leading orange-fleshed honey dew cultivars. Five orange-fleshed honey dew genotypes (‘Honey Gold’, ‘Orange Delight’, ‘Orange Dew’, ‘Temptation’, and a breeding line) were glasshouse-grown in both fall and spring, harvested at abscission (full-slip), and compared after storage for 3–24 days in air at 5 or 10 °C. Fruit maturity (full-slip) was between 31 and 38 days after anthesis, with maturation dependent on genotype. Days to maturity were slightly longer in the fall than in the spring. Fruit size (number of fruit per standard commercial shipping box) was between four and six fruit per box. ‘Orange Dew’ consistently had the smallest fruit (six per box), and the breeding line had the largest (four per box). ‘Orange Delight’ and ‘Orange Dew’ had the fewest whole-fruit disorders and the highest percentage of marketable fruit at harvest and following 24 days of storage at 5 or 10 °C. ‘Orange Delight’, ‘Orange Dew’, and the breeding line consistently had a more yellow peel, whereas ‘Honey Gold’ and ‘Temptation’ fruit peels had a more greenish hue. Whole-fruit firmness was 10–25 N among the cultivars and 24–35 N for the breeding line. Internal-fruit disorders, percentage marketability, and mesocarp (pulp) firmness reflected each genotype's whole-fruit attributes. ‘Orange Delight’ and ‘Orange Dew’ fruit consistently had among the highest soluble solids concentration and relative sweetness ratings, and their pulp had a more intense orange hue and lower lightness than those of the other genotypes. After 24 days of storage, ‘Orange Delight’ and ‘Orange Dew’ maintained their higher sweetness and more orange hue in both spring and fall harvests; however, depending on harvest, they were not always significantly sweeter or more orange-hued than some of the other genotypes. Our results indicate that orange-fleshed honey dew fruit are a promising new melon type suitable as a substitute for orange-fleshed netted muskmelon fruit not only for food-safety issues but also for overall marketable quality.

Free access

Gene E. Lester, John L. Jifon and D. J. Makus

Netted muskmelon [Cucumis melo L. (Reticulatus Group)] fruit quality (ascorbic acid, β-carotene, total free sugars, and soluble solids concentration (SSC)) is directly related to plant potassium (K) concentration during fruit growth and maturation. During reproductive development, soil K fertilization alone is often inadequate due to poor root uptake and competitive uptake inhibition from calcium and magnesium. Foliar applications of glycine-complexed K during muskmelon fruit development has been shown to improve fruit quality, however, the influence of organic-complexed K vs. an inorganic salt form has not been determined. This glasshouse study investigated the effects of two K sources: a glycine-complexed K (potassium metalosate, KM) and potassium chloride (KCl) (both containing 800 mg K/L) with or without a non-ionic surfactant (Silwet L-77) on melon quality. Orange-flesh muskmelon `Cruiser' was grown in a glasshouse and fertilized throughout the study with soil-applied N–P–K fertilizer. Starting at 3 to 5 d after fruit set, and up to 3 to 5 d before fruit maturity at full slip, entire plants were sprayed weekly, including the fruit, with KM or KCl with or without a surfactant. Fruit from plants receiving supplemental foliar K had significantly higher K concentrations in the edible middle mesocarp fruit tissue compared to control untreated fruit. Fruit from treated plants were also firmer, both externally and internally, than those from non-treated control plants. Increased fruit tissue firmness was accompanied by higher tissue pressure potentials of K treated plants vs. control. In general, K treated fruit had significantly higher SSC, total sugars, total ascorbic acid, and β-carotene than control fruit. Fall-grown fruit generally had higher SSC, total sugars, total ascorbic acid and β-carotene concentrations than spring-grown fruit regardless of K treatment. The effects of surfactant were not consistent but in general, addition of a surfactant tended to affect higher SSC and β-carotene concentrations.