Search Results

You are looking at 11 - 20 of 39 items for

  • Author or Editor: G. A. Clark x
Clear All Modify Search

Salvia (Salvia splendens F.), vinca (Catharanthus roseus L.), and pansy (Viola × wittrockiana Gams.) were examined to determine efficacy of growth retardants for inhibiting stem elongation of seedlings in the plug stage and after transplanting to 10-cm pots. Studies on salvia showed plugs sprayed with single applications of ancymidol at 10 or 20 ppm, paclobutrazol at 30 or 60 ppm, or daminozide/chlormequat tank mix at 2500/1500 ppm inhibited plug elongation by 17% to 22%. Pansy plugs were sprayed either once or twice with ancymidol at 5, 10, or 15 ppm. Number of applications was statistically significant with two applications reducing elongation by an average of 35%, whereas a single application resulted in a 23% average reduction. Ancymidol concentration was significant in reducing stem elongation with increasing rates in pansy; however, the concentration and application time interaction was not significant. In both pansy and salvia, plant size at flowering was similar to controls after transplanting. Vinca plugs were sprayed with ancymidol at 5, 10, or 15 ppm either the 3rd week, 4th week, or both weeks after sowing. As ancymidol concentrations increased, plug height decreased, and the concentration effect was greater week 3 than at week 4. Two applications of ancymidol was most effective in retarding stem elongation (36%) followed by one spray the 3rd week (29%) and one spray during week 4 (20%).

Free access

A broccoli (Brassica oleracea var. botrytis L.) seedling bioassay was used to measure paclobutrazol activity and distribution in two growing media following drench or subirrigation applications. The bioassay exhibited a saturation-type response curve for paclobutrazol concentrations up to 1000 μg·L-1 in solution and 100 μg·L-1 in the media. The concentration of paclobutrazol required to achieve one-half of the maximum observed bioassay activity was 3-fold as high in bark-based commercial potting medium as in a peat-based medium. Less than 2% of applied paclobutrazol leached out during the drench application despite the collection of up to 50 mL of leachate per 120 mL of the solution (1000 μg·L-1) that was applied per 15-cm pot. Immediately following drench application, paclobutrazol concentrations in both media were highest in the uppermost 2.5 cm and decreased downward. By 3 weeks after treatment, drench-applied paclobutrazol had moved into lower depths. Distribution of paclobutrazol was limited to the bottom 2.5 cm of media when applied as a subirrigation soak. Chemical name used: (±)-(R*,R*)-β-[(4-chlorophenyl)methyl]-α-(1,1-dimethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol).

Free access

Contamination of recirculated subirrigation water with growth retardants poses a potential problem for growers. Eight concentrations of ancymidol or paclobutrazol ranging from 0 to 100 μg·L-1 (0 to 1000 μg·L-1 for petunia) were supplied constantly in subirrigation water to potted plants to identify critical levels at which plant growth is affected. Concentrations of ancymidol resulting in 20% reduction in plant size relative to untreated controls were 3, 10, 98, 80, and 58 μg·L-1 for Begonia ×semperflorens-cultorum Hort. `Gin', chrysanthemum (Dendranthema ×grandiflora Kitam.) `Nob Hill', Impatiens walleriana Hook f. `Super Elfin Coral', Petunia ×hybrida Hort. Vilm.-Andr. `Madness Pink', and Salvia splendens Sell ex Roem. & Schult. `Red Hot Sally', respectively. Respective values for paclobutrazol were 5, 24, 17, 390, and >100 μg·L-1. The results provide useful information for managing potential growth retardant contamination problems or for applying growth retardants in subirrigation water. Chemical names used: α-cyclopropyl-α-(4-methoxyphenyl)-5-pyrimidinemethanol (ancymidol); (±)-(R*,R*)-β-[(4-chlorophenyl)methyl]-α-(1,1-dimethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol).

Free access

Production and postproduction factors were examined to evaluate effects on postproduction performance and longevity of several varieties of potted African violets, carnations, chrysanthemum, cyclamen, gerbera, Hiemalis begonia, hibiscus, hydrangea, kalanchoe, and lisianthus. Various N rates (150–600 ppm) and fertilizer termination 2 to 3 weeks prior to flowering were evaluated. Chrysanthemums, hydrangea, and lisianthus had better quality and longevity at N rates ranging from 200 to 300 ppm, while all other crops performed best at 150 ppm N. Terminating fertilizer had no effect on longevity or quality of carnation, gerbera, Hiemalis begonia, hydrangea, or kalanchoe, while chrysanthemum and cyclamen had a significant increase in longevity when terminated. Lisianthus had an increase in quality and longevity when fertilizer was continued to the end of production. Shipping at the proper bud developmental stage significantly influenced flower opening and longevity in the postharvest environment. Lisianthus and hydrangea need to have at least 75% of the buds fully opened, while carnations, chrysanthemum, cyclamen, and kalanchoe need at least 25% to 50% open. Hiemalis begonia, a very long-lasting potted plant, tolerated a range of 10% to 75% open flowers at shipping. Optimum transport temperature and transport duration varied for each crop. Generally, transporting for 3 days at 2 to 7 °C was best for carnation, chrysanthemum, and gerbera, while transporting at 7 to 12 °C was best for cyclamen, Hiemalis begonia, hydrangea, kalanchoe, and lisianthus. Hibiscus performed best when transported at 18 °C. Longevity and quality were maximized when maintained at 18 to 21 °C at 14 μmol·m–2·s–1. Differences in variety performance was a major factor in postproduction performance.

Free access

The traditional use of poinsettias has been as potted plants. A new poinsettia variety, `Winter Rose Dark Red', is performing well as a cut flower, lasting 2 to 3 weeks. Various postharvest handling procedures were examined, including stem processing methods at harvest, storage and transit conditions, as well as handling practices at the wholesale, retail, and consumer levels, to determine the best handling practices to maximize quality and longevity. At harvest, traditional latex controlling techniques, such as dipping stems in 95% ethanol for 10 min and burning or boiling stem tips were tested. Stems wilted faster when dipped in ethanol or burned. The woody nature of the stem contains little latex compared to traditional varieties; thus, no latex-controlling methods are needed or beneficial. After harvest, there was no benefit found in hydrating stems in a commercial hydration solution compared to plain water. Transport and/or storage conditions between 10 to 15 °C for 3 to 4 days maximized longevity. Chilling injury occurred when transported at 4 °C. Leaves and bracts wilted when stored dry in a box, but recovered within 12 to 24 h when stored for 2 days. Leaves abscised after exposure to short-term wilting but no bract abscission occurred. Storing stems in a 10% bleach solution prevented wilting and reduced bacterial growth. Bracts were sensitive to mechanical injury during transit, resulting in bruising lesions on the bracts, which increased sensitivity to bract edge burn. Stems declined faster when maintained in a floral preservative compared to water during the consumer phase.

Free access

It has traditionally been recommended to cut flower stems underwater to reduce blockage and improve water uptake, although little scientific information relates this practice to vase life. The purpose of our study was to evaluate the benefit of this processing technique on quality and longevity of several cut flowers species. Stems were either cut dry or cut wet under deionized water with a stainless steel blade and placed into vases containing a commercial floral preservative. Water samples were obtained from the cutting tank over time during stem processing for bacteria counts. Stems were maintained at 2 °C at 10 μmol·m–2·s–1 (12 h/day). The results were variable from shipment to shipment, possibly due to differences in stem quality or cutting water quality. In most cases, cutting underwater had no effect on longevity of alstroemeria, chrysanthemums, gerbera daisy, roses, or snapdragons. However, in a few instances, cutting underwater improved longevity slightly. Cutting stems underwater was consistently effective in increasing longevity 2-4 days for carnations. Bacteria counts in the cutting tank water after 500 stems were processed were 6/34 × 106 propagules/mL and increased to 1.00 × 107 propagules/mL after 1000 stems. The increase in bacteria decreased leaf quality in roses and reduced the number of snapdragon flowers that opened, but did not affect longevity. In gerberas, however, longevity decreased 2 days. A high concentration of bacteria in the cutting water may effect quality and longevity of many cut flower species and may negate any benefit in cutting stems underwater.

Free access

In some species of bedding plants, rapid hypocotyl elongation during germination makes size control in plug production difficult. Commercial growers often start applying growth regulators as cotyledons are expanding or after the first true-leaves are expanding. Using `Bonanza Spry' marigolds, we evaluated applying paclobutrazol at sowing and after 3 and 6 days. Sprays at 30 mg·L–1 in a volume of 0.2 L·m–2 or 3 mg·L–1 in 0.6 mg·L–1 applied at sowing reduced hypocotyl elongation by 25% and produced more compact plugs. In a second study, plugs of `Double Madness Rose' petunia, `Showstopper Orange' impatiens, `Wizard Rose' coleus, and `Cooler Rose' vinca were grown in 10-cm pots with a growing medium that did not contain pine bark. Uniconazole was sprayed in a volume of 0.2 L·m–2 onto the surface of the medium before planting at concentrations of 25%, 50%, and 100% of the label's recommended concentration for each crop. An additional treatment was uniconazol applied 2 weeks after planting at the label concentration. All early applications reduced final plant size compared to the nonsprayed plants. For impatiens, the early application at 25% of the label concentration produced plants similar to the spray at 2 weeks after planting. For the other crops, the 50% treatment prodcued plants similar to the spray after planting. The early applicaiton of growth regulators offers the industry an additional stradagy to use for controlling the growth of vigorous bedding plant crops.

Free access

Experiments were conducted with four kinds of flowering plants to compare one-time vs. continuous application of paclobutrazol in subirrigation water. When a crop reached the stage at which it required growth regulator treatment, four concentrations of paclobutrazol were applied via subirrigation either one-time or continuously until the crop was terminated. Based upon regression equations, concentrations resulting in 30% size reduction for one-time applications of paclobutrazol were 0.01 mg·L-1 for Begonia ×semperflorens-cultorum `Cocktail Gin', 0.09 mg·L-1 for Impatiens wallerana Hook. `Super Elfin White', 0.2 mg·L-1 for Dendranthema ×grandiflorum (Ramat.) Kitamura `Tara', and 2.4 mg·L-1 for Petunia ×hybrida Vilm.-Andr. `Plum Crazy'. Respective optimal values for continuous application were 0.005, 0.02, 0.06, and 0.4 mg·L-1. Increasing the concentration for continuous application had a greater effect on paclobutrazol efficacy than did increasing the concentration for a single application. In a trial with impatiens `Super Elfin Salmon Blush', the paclobutrazol concentration was reduced 0%, 25%, 50%, 75%, or 100% (single application) for each successive subirrigation event following an initial application of 0.1 mg·L-1 of paclobutrazol. The 50%, 75%, and 100% reduction treatments provided similar levels of size control. Dilution was more important when the reduction rate was less than 50%. Chemical name used: (±)-(R*,R*)-β-[(4-chlorophenyl)methyl]-α-(1,1-dimethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol).

Free access

Postproduction evaluation trials have been developed in North America and Europe to test postproduction performance of potted roses from individual growers. The results of the trials have been compiled on the “Roses On The Web” Website (www.parade.dk). Roses on the WEB is a cooperative project between Poulsen Roses ApS, Denmark, the Danish Institute of Agricultural Sciences, and the Univ. of Florida. The goal of the Website is to provide growers participating in the evaluation trials a quick and easy way to obtain results on the postproduction quality of their roses. Plants receive 4 days of simulated transport, sleeved in a box in darkness at 16 °C. After transport, plants are maintained at 20 °C at 8 μmol·m–2·s–1 for 12 hours/daily. Relative humidity is maintained at 55% ± 5%. To determine quality, several parameters are recorded at day 0 (day of arrival), 11, 18, 22, and 28. The recordings include the number of open and damaged flowers and buds, percentage of damaged leaves, and the presence of disease and pests. Based on the results of all the measurements, each plant is given a postproduction rating or index, indicating quality. Results from each trial are tabulated and stored on the Website. Growers are able to view their results by entering a password. Growers can evaluate their quality over time and are also able to compare their quality with other growers. Many quality problems are manifested in the postproduction environment and can often be directly related to incorrect greenhouse conditions and/or cultural practices. “Roses On The Web” is a tool that provides quick, up-to-date information that can be crucial to the success of a grower. Differences in quality were found based on grower, time of year and variety.

Free access

We are studying the horticultural performance of two model plant systems that carry a mutant gene that confers ethylene-insensitivity: Never Ripe tomatoes and petunia plants transformed with the mutant etr1-1 gene isolated from Arabidopsis thaliana. Having two model systems to compare side-by-side allows us to determine with greater certainty ethylene's role at different developmental stages. Presence of the mutant etr1-1 gene in transgenic petunias was determined using three techniques: PCR analysis, the seedling triple response assay (inhibition of stem elongation, radial swelling of stem and roots, and an exaggerated apical hook when grown in the dark and in the presence of ethylene), and the flower wilting response to pollination, which is known to be induced by ethylene. Flowers from ethylene-insensitive petunias took almost four times as long to wilt after pollination as wild-type plants. It is well known that fruit ripening in Never Ripe tomato is inhibited, and a similar delayed fruit ripening phenotype is observed in petunia plants transformed with etr1-1. In an effort to maintain ethylene-insensitive petunia plants by vegetative propagation, we observed that the rate of adventitious root formation was much lower with transgenic plants than in wild-type plants. In subsequent experiments on adventitious root formation in Never Ripe tomato, we observed the same result. Therefore, while ethylene-insensitive tomato and petunia plants appear phenotypically normal for many characters, other factors are altered by the presence of this mutation. The fact that these changes are present in two model systems helps to define the role of ethylene perception in plant growth and reproduction.

Free access