Search Results

You are looking at 11 - 20 of 30 items for

  • Author or Editor: Fenny Dane x
Clear All Modify Search

The population structure and genetic diversity of American chestnut trees collected in nine states along the natural range of the species was evaluated using 20 isozyme loci. Genetic heterozygosity (Ht:Nei, 1978) ranged from 0.089 in the Georgia and 0.094 in the North Carolina population to 0.172 in the northernmost (Connecticut) and 0.181 in the southernmost (Alabama) population. Four populations (Pennsylvania, New York, Virginia, and Alabama) were selected for RAPD analysis using 22 loci randomly distributed across the chestnut genome. The highest level of heterozygosity was in the Alabama population. UPGMA phenograms generated for the isozyme and RAPD markers using Nei's genetic identity showed similar genetic relationships among American chestnut populations.

Free access
Authors: and

The watermelon (Citrullus lanatus var. lanatus) ‘AU-Performance’ was developed for resistance to multiple fungal pathogens and the plant virus, zucchini yellow mosaic virus (ZYMV). A greenhouse-based evaluation was carried out to determine the response of ‘AU-Performance’ to inoculation with three important cucurbit (Cucurbitaceae) viruses in the genus Potyvirus: papaya ringspot virus (PRSV), watermelon mosaic virus (WMV), and ZYMV. The evaluation included the resistant parent (PI595203), the susceptible parent (‘AU-Producer’), and varieties AU-Allsweet and Charleston Gray. Each of the three viruses systemically infected ‘AU-Performance’ with 100% infection and development of characteristic systemic symptoms. The susceptible parent (‘AU-Producer’), ‘AU-Allsweet’, and ‘Charleston Gray’ responded similarly with 100% infection and systemic symptoms. In contrast, the resistant parent (PI595203) was resistant to WMV and ZYMV; however, PRSV-inoculated plants developed a systemic infection with accompanied symptoms and high levels of PRSV accumulation in noninoculated leaves. PI595203 was shown in previous studies to be resistant to PRSV. We show in this report that under greenhouse conditions and application of virus by mechanical inoculation, ‘AU-Performance’ was not resistant to infection by the three potyviruses.

Free access

The Chinese chestnut (Castanea mollissima Blume) is a valuable germplasm resource for horticultural traits such as resistance to chestnut blight (Cryphonectria parasitica), excellent quality, wide adaptation, and consistent high yield. The Chinese chestnut breeding program was established at Auburn Univ. in 1933 from nuts directly introduced from China by the USDA. A recurrent selection breeding program with progeny from the 1933, 1953, and 1991 plantings with selection for blight resistance, precocity, nut size, and storage quality, yield, and pest resistance. Cultivars released from the 1933 planting were `Alaling,' `Alamore', and `Black Beauty'. `AU-Cropper', `AU-Leader', and `AU-Homestead' were named from the 1953 planting. Two blight-resistant, precocious seedlings, AU-91-P1-26 and AU-P4-26, appear to be very promising selections for improvement of all Chinese chestnut cultivars for nut size and other selection traits. Since there is little information available regarding heritability of certain traits in perennial tree species, results of 65 years of breeding at Auburn Univ. should provide us with guidance for further improvement of selection traits in chestnut breeding.

Free access

The bacterium Xanthomonas campestris pv. campestris (Xcc), causal agent of black rot disease in crucifers was tagged with the luciferase gene complex of the marine bacterium Vibrio fisheri. The growth of the bioluminescent strain in plants and the environment can be monitored by its light emissions. Susceptible cabbage plants were either mist, wound or debris inoculated in the field, soil was inoculated with debris or with suspension culture of genetically engineered Xcc. Plant, soil and air samples will be taken at biweekly intervals to monitor the spread of the bioluminescent bacterium within as well as outside the environmental release site. The transfer of exotic DNA to other bacteria in the environment will also be studied.

Free access

Linkage relations among eight isozyme genes, Acp-3, Est-1, Est-5, Prx-1, Prx-2, Prx-3, Me and Adh, and two morphological markers, Inh, and Twh, were investigated in one F2 and two BC1 families of interspecific crosses between the American chestnut (Castanea dentata) and the Chinese chestnut (C. mollissima). Inh was found to be consistently linked with Prx-1 and Est-5 in all families. The order of these three genes was determined to be-Ihn--Prx1--Est5. In addition, four other gene pairs, Acp3--Inh, Acp3--Prx1, Me--Inh and Twh--Inh were found to be linked in one of the three families investigated. The four isozyme genes and two morphological marker genes were tentatively integrated into one linkage group with the following gene order Acp3--Me--Twh--Inh--Prx1-Est5. This study demonstrated that isozyme genes can be integrated with morphological marker genes into a single linkage map without the need for additional crosses.

Free access

The genetic diversity within and between geographic populations of the American chestnut tree was evaluated with allozyme and RAPD markers. Winter dormant or mature shoot buds from American chestnut trees collected in Alabama, Georgia, North Carolina, Virginia, Pennsylvania, Ohio, Michigan, and Connecticut were used for isozyme assays. Genetic diversity statistics calculated for 20 isozyme loci indicated that the highest level of heterozygosity was detected in the Alabama and Connecticut populations, the lowest level in the Great Smoky Mountain populations. RAPD analyses were conducted on American chestnut plant material. The best results were obtained with seed tissue. Seed from New York, Virginia, and Pennsylvania populations and buds from Alabama and Georgia populations were evaluated for RAPD markers scattered throughout the chestnut genome.

Free access

Genetic variation among nine populations of Ozark chinkapin [Castanea pumila (L.) Mill. var. ozarkensis (Ashe) Tucker], threatened by their susceptibility to chestnut blight (Cryphonectria parasitica (Murrill) Barr), was investigated. Population genetic parameters estimated from isozyme variation suggest the populations have a higher genetic diversity (He = 0.227) than populations of the other Castanea Mill. species on the North American continent, the American chestnut (C. dentata (Marsh.) Borkh.) High levels of heterozygosity were detected within the populations, but nonsignificant differences in genetic diversity were observed among the different populations. Principal component analysis based on isozyme allele frequencies or randomly amplified polymorphic DNA phenotype frequencies showed clustering of the same populations. Populations with high levels of genetic diversity and unusual alleles should be the focal point of conservation biologists for capturing much of the genetic variation of the species.

Free access

Allozyme polymorphism in chestnut (Castanea) species was investigated using isoelectric focusing in thin-layer polyacrylamide slab gels. Genetic analysis of the progenies of intraspecific crosses and interspecific F2s and backcrosses (BC1s) allowed the verification of 11 polymorphic isozyme loci from 11 enzyme systems. The following loci were defined: Acp, Adh, Est-1, Est-2, Est-5, Me, Prx-1, Prx-2, Prx-3, Skd-3, and Skd-4. All polymorphic loci behaved as single-locus Mendelian genes. Skd showed unique species specificity. Skd-1 and Skd-2 were unique to the American chestnut (C. dentata Borkh.) and the European chestnut (C. sativa Mill.), whereas Skd-3 and Skd-4 were unique to the Chinese chestnut (C. mollissima Bl.) and the Japanese chestnut (C. crenata Sieb.). Linkage analysis revealed linkage for three pairs of loci: Skd-3/Skd-4, Est-1/Est-2, and Est-5/Prx-1. The single-tree progeny method was used successfully for isozyme genetic analysis. Forty-seven chestnut cultivars in six chestnut species were characterized using 12 isozyme loci and can be unambiguously identified by 12 multi-locus genotypes. The interspecific and geographic relationships among species were also discussed.

Free access

A linkage map was constructed of the watermelon genome using F2 and F2:3 populations segregating for resistance to race 1 and 2 of Fusarium oxysporum f. sp. niveum (FON 1 and 2). Sixty-four percent of the RAPD primers used in the parents and F1 detected polymorphism. In the F2, 143 polymorphic bands were scored, 60% of which exhibited the expected 3:1 segregation ratio. A 113 cM linkage map was constructed using Mapmaker version 3 and LOD of 4. DNA pools of Fusarium wilt resistant or susceptible F2:3 lines were created and bulked segregant analysis was used to detect molecular markers linked to FON 1 or FON 2 resistance. Four individuals per line were used to confirm linkages and construct an F2:3 linkage map. One large linkage group was detected in both generations. A large proportion of the RAPD and SSR markers were unlinked and many showed segregation distortion. Single-factor ANOVA for each pairwise combination of marker locus and resistance or morphological trait was conducted. RAPD markers with putative linkages to FON 1 and FON 2 and several morphological traits were detected.

Free access

Morphological traits were examined in an F3 generation derived from a cross between C. lanatus var. lanatus [(Thunb.) Matsum. & Nakai] and C. lanatus var. citroides. At least three genes, C (yellow) vs. c (red), i (inhibitory to C) vs. I (non-inhibitory to C), and y (yellow) vs. yw (white), with epistatic and inhibitory actions were found to govern the inheritance of fruit flesh color. The high frequency of yellow-fleshed fruit and low frequencies of white and red fruits can be explained by the presence of a new allele (yw recessive to y) in the multiple allele series at the Y locus. The low frequency of tan colored seeds in segregating populations could be explained by at least three genes governing inheritance of seed-coat color. Single factor analysis of variance was conducted for each pairwise combination of random amplified polymorphic DNA (RAPD) locus and fruit or seed characteristics. Several RAPD loci were identified to be loosely linked to morphological characteristics.

Free access