Search Results

You are looking at 11 - 20 of 46 items for

  • Author or Editor: Dean Kopsell x
Clear All Modify Search

Sweet basil (Ocimum basilicum L.) is a popular culinary herbal crop grown for fresh or dry leaf, essential oil, and seed markets. Recently, basil was shown to rank highest among spices and herbal crops for xanthophyll carotenoids, which are associated with decreased risks of cancer and age-related eye diseases. The research goal for the current study was to characterize the concentrations of nutritionally important carotenoid pigments in popular varieties of basil. Eight cultivars of sweet basil (`Genovese', `Italian Large Leaf', `Nufar', `Red Rubin', `Osmin Purple', `Spicy Bush', `Cinnamon', and `Sweet Thai') were grown in both field and greenhouse environments and evaluated for plant pigments using HPLC methodology. Environmental and cultivar differences were observed for all of the pigments analyzed. `Sweet Thai' accumulated the highest concentrations of lutein, zeaxanthin, and β-carotene carotenoids in the field, while `Osmin Purple' accumulated the highest carotenoid concentrations in the greenhouse. Comparing the two environments, cultivar levels for carotenoid and chlorophyll pigments were higher in the field environment when expressed on both a fresh and dry weight basis. Exceptions were found only for the purple leaf basils (`Osmin Purple' and `Red Rubin'). Positive correlations existed between carotenoid and chlorophyll pigments in both environments. This study demonstrates sweet basil accumulates high levels of nutritionally important carotenoids in both field and greenhouse environments.

Free access

Kale (Brassica oleracea L.) ranks highest among vegetable crops for lutein and beta-carotene carotenoids, which function as antioxidants in disease prevention. Nitrogen (N) rate and N form influence plant growth and alter pigment composition and accumulation. The objectives of these experiments were to investigate the effect of N rate and form on biomass and accumulation of plant pigments in the leaf tissues of kale. Three kale cultivars were grown using nutrient solution culture. In the first study, N treatment rates were 6, 13, 26, 52, and 105 mg·L–1, at a constant NH4-N:NO3-N ratio. Kale biomass increased linearly in response to increasing N rate. On a fresh weight basis, lutein and beta-carotene were not affected by N rate. However, carotenoids calculated on a dry weight basis increased linearly in response to increasing N rate. In a second study, kale was grown under: 100% NH4-N:0% NO3-N, 75% NH4-N:25% NO3-N, 50% NH4-N:50% NO3-N, 25% NH4-N:75% NO3-N, and 0% NH4-N:100% NO3-N, at a N rate of 105 mg·L–1. Linear increases in biomass were observed for each kale cultivar as percentage of NO3-N increased. Lutein concentrations increased 155%, 73%, and 39% for `Toscano', `Winterbor', and `Redbor' kale, respectively, as N form changed 0% NO3-N to 100% NO3-N. Concentration of leaf beta-carotene increased linearly in response to increasing NO3-N in each cultivar tested. Nitrogen management should be considered in crop production programs designed to increase the concentrations of nutritionally important carotenoids.

Free access

Therapeutic compounds in herbal crops are gaining recent attention. Sweet basil (Ocimumbasilicum L.) is a popular culinary herbal crop grown for both fresh and dry leaf markets. Recently, basil (unidentified cultivar) was shown to rank highest among spices and herbal crops for xanthophylls carotenoids. This class of carotenoids is associated with decreased risks of certain cancer and age-related eye diseases. The research goal for the current study was to characterize the concentrations of nutritionally important carotenoid pigments among popular varieties of basil. Eight cultivars of sweet basil (`Genovese', `Italian Large Leaf', `Nufar', `Red Rubin', `Osmin Purple', `Spicy Bush', `Cinnamon', and `Sweet Thai') were grown in both field and greenhouse environments and evaluated for plant pigments using HPLC methodology. Environmental and cultivar differences were significant for all of the pigments analyzed. `Sweet Thai' accumulated the highest concentrations of lutein, zeaxanthin, and beta-carotene carotenoids, while `Italian Large Leaf' had the lowest concentrations. Comparing the two environments, cultivar means for carotenoid and chlorophyll pigments were higher in the field environment when expressed on both a fresh and dry weight basis. Exceptions were found only for the purple leaf basils (`Osmin Purple' and `Red Rubin'). Positive and highly significant correlations existed between carotenoid and chlorophyll pigments in both environments. This study demonstrates that sweet basil can accumulate high levels of nutritionally important carotenoids in both field and greenhouse environments.

Free access

Crop plants are adversely affected by a variety of environmental factors, with air temperature being one of the most influential. Plants have developed a number of methods in the adaptation to air temperature variations. However, there is limited research to determine what impact air temperature has on the production of secondary plant compounds, such as carotenoid pigments. Kale (Brassica oleracea L.) and spinach (Spinacia oleracea L.) have high concentrations of lutein and β-carotene carotenoids. The objectives of this study were to determine the effects of different growing air temperatures on plant biomass production and the accumulation of elemental nutrients, lutein, β-carotene, and chlorophyll pigments in the leaves of kale and spinach. Plants were grown in nutrient solutions in growth chambers at air temperatures of 15, 20, 25, and 30 °C for `Winterbor' kale and 10, 15, 20, and 25 °C for `Melody' spinach. Maximum tissue lutein and β-carotene concentration occurred at 30 °C for kale and 10 °C for spinach. Highest carotenoid accumulations were 16.1 and 11.2 mg/100 g fresh mass for lutein and 13.0 and 10.9 mg/100 g fresh mass for β-carotene for the kale and spinach, respectively. Lutein and β-carotene concentration increased linearly with increasing air temperatures for kale, but the same pigments showed a linear decrease in concentration for increasing air temperatures for spinach. Quantifying the effects of air temperature on carotenoid accumulation in kale and spinach, expressed on a fresh mass basis, is important for growers producing these crops for fresh markets.

Free access

Green leafy vegetables are important sources of dietary carotenoids, and members of Brassica oleracea L. var. acephala rank highest for reported levels of lutein and β-carotene. Twenty-three leafy B. oleracea cultigens were field grown under similar fertility over two separate years and evaluated for leaf lutein and β-carotene accumulation. Choice of B. oleracea cultigen and year significantly affected carotenoid levels. Lutein concentrations ranged from a high of 13.43 mg per 100 g fresh weight (FW) for B. oleracea var. acephala `Toscano' to a low of 4.84 mg/100 g FW for B. oleracea var. acephala 343-93G1. β-carotene accumulations ranged from a high of 10.00 mg/100 g FW for B. oleracea var. acephala `Toscano' to a low of 3.82 mg/100 g FW for B. oleracea var. acephala 30343-93G1. Carotenoid concentrations were significantly higher in year 2 than in year 1, but rank order among the cultigens for both lutein and ß-carotene did not change between the years. During each year, there were high correlations between leaf carotenoid and chlorophyll pigments. Under similar growing conditions, choice of B. oleracea cultigen will influence carotenoid accumulation, and this may affect the health benefits of consuming these leafy green vegetable crops.

Free access

Vegetable crops can be significant sources of nutritionally important dietary carotenoids, and Brassica are sources that also exhibit antioxidant and anticarcinogenic activity. The family Brassicaceae contains a diverse group of plant species commercially important in many parts of the world. The six economically important Brassica species are closely related genetically. Three diploid species (B. nigra, B. rapa, B. oleracea) are the natural progenitors of the amphidiploid species (B. juncea, B. napus, B. carinata). The objective of this study was to characterize the accumulation of important dietary carotenoid pigments among the genetically related Brassica species. High-performance liquid chromatographic quantification revealed significant differences in carotenoid and chlorophyll pigment concentrations among the Brassica species. Brassica rapa accumulated the highest concentrations of antheraxanthin [0.79 mg/100 g fresh weight (FW)], lutein (8.89 mg/100 g FW), and zeaxanthin (0.75 mg/100 g FW). The highest concentrations of β-carotene (4.41 mg/100 g FW) and total chlorophyll (125.9 mg/100 g FW) were found in B. juncea. Brassica nigra accumulated the highest concentrations of 5,6-epoxylutein (0.41 mg/100 g FW) and violaxanthin (2.28 mg/100 g FW), whereas B. oleracea accumulated the highest concentrations of neoxanthin (2.10 mg/100 g FW). For many of the pigments analyzed, the amphidiploids B. carinata and B. napus accumulated significantly less carotenoid concentrations than the diploid species and B. juneca. Brassica convey unique health attributes when consumed in the diet. Identification of genetic relationships among the Brassica species would be beneficial information for improvement programs designed to increase carotenoid values.

Free access

Selenium (Se) is an essential mammalian micronutrient. Adult humans have a daily requirement of 55 to 70 μg/day Se depending on sex and pregnancy/lactation for females. In addition, recent studies have shown health benefits with dietary Se supplementation of 100 to 200 μg/day Se. However, daily intakes in humans greater than 900 μg Se will result in toxicity called selenosis. Although not essential in plant nutrition, some species can bioaccumulate Se. Brassica and Allium species became prime candidates for Se enrichment because of their ability to accumulate and tolerate high concentrations of Se in edible tissues; however, there is now concern that these species are too efficient at selenization and overconsumption of their selenized tissues could result in selenosis. Herbal crop species are consumed regularly in the diet for their culinary flavor attributes. Basil (Ocimum basilicum L.) and cilantro (Coridandrum sativum L.) are not classified as Se accumulators. Therefore, a study was undertaken to determine the potential to selenize basil and cilantro through foliar Se applications to consistently supplement diets with nutritionally beneficial levels of Se. Plants of each species were grown in both growth chamber and field environments and treated with foliar applications (5 mL per plant) of selenate-Se and selenite-Se at concentrations of 0, 2, 4, 8, 16, and 32 mg·L−1 Se. Crops received three separate foliar applications at ≈5-day intervals beginning 24 to 28 days after planting for the growth chamber plants and 50 days after planning for the field environment. Selenium accumulation in both basil and cilantro leaf tissues increased linearly under both selenate-Se (P ≤ 0.001) and selenite-Se (P ≤ 0.001) foliar treatments in growth chamber and field evaluations. Maximum Se leaf tissue concentrations for basil and cilantro ranged from 13 to 55 μg·g−1 Se dry weight. Selenization of basil and cilantro is possible through foliar Se applications, and Se fortification of herbal crops may provide alternative delivery systems in human diets.

Free access

Purslane (Portulaca oleracea) is a succulent weedy annual in much of the United States. In other parts of the world, purslane is grown as a specialty crop, valued for its nutritional quality. As a leafy crop, purslane contributes carotenoid phytochemicals in the typical Mediterranean diet. Nitrogen (N) influences plant growth and alters pigment composition and accumulation. However, little is known about the impact N fertility may have on pigment concentrations in purslane shoot tissues. The objective of this study was to evaluate the influence of N fertility levels on biomass and concentrations of nutritionally important carotenoid and chlorophyll pigments in purslane. Green Leaf and Golden Leaf purslane cultivars were grown in nutrient solution culture under N concentrations of 13, 26, 52, or 105 mg·L−1. Plants were harvested at 45 days after planting (DAP), and measured for concentrations of shoot pigments using high-performance liquid chromatography (HPLC) methodology. There was no influence of N treatment concentration on purslane shoot tissue fresh weight (FW) accumulation. Nitrogen treatment significantly influenced shoot tissue β-carotene (BC), lutein (LUT), neoxanthin (NEO), total carotenoids, chlorophyll a, chlorophyll b, total chlorophyll, and the chlorophyll a to b ratio in purslane shoot tissues. Concentrations of LUT, NEO, violaxanthin (VIO), chlorophyll b, total xanthophyll cycle pigments, and the chlorophyll a to b ratio differed between the purslane cultivars. Increases in N concentrations acted to increase concentrations of nutritionally important shoot tissue carotenoid pigments in only the Green Leaf purslane cultivar. Therefore, N fertility management and cultivar selection should be considered when producing purslane as a nutritious specialty vegetable crop.

Free access

Experiments were conducted to investigate the potential effect on floral bud initiation in strawberry (Fragaria × ananasa, cv. Chandler) by interrupting inductive short day cycles with a day-length extension treatment. Vegetative plants were exposed to 10-, 15-, or 20-day cycles of inductive short days in growth chambers. After receiving an inductive short day treatment plants were transferred to a greenhouse where they were exposed to non-inductive long days, which stimulated panicle elongation. Dissections of apical meristems immediately following each cycle of short days revealed that cycles of 20 days resulted in detectable floral bud formation. After 15 days in the greenhouse, all short day treatments had initiated floral buds. In the greenhouse, under long days, subsequent flowering in cohorts of plants which had previously received inductive short days showed a positive correlation between interruption of short days with day length extension and reduction in the number of floral buds initiated on earliest emerging panicles. These results suggest potential for manipulation of floral bud induction and potentially fruit size in Chandler, and perhaps other cultivars by interruption of a cycle of inductive short days with a day length extension treatment.

Free access

Brassica species are important economic vegetable crop, and it is possible to enrich them with selenium (Se) to supplement human diets. The health benefits associated with increased Se consumption include cancer suppression, reduced heart disease, and immune system enhancement. Vegetables enriched with Se can serve as excellent delivery systems of organic Se forms, which are more beneficial than traditional Se supplements. The vegetable Brassicas are consumed not only for their flavor, but also for their nutritional content. A heterogeneous population of rapid-cycling B. oleracea was used as a model system to study the effects of added selenate-Se on other plant micro- and macronutrients. Plants were grown in nutrient solutions amended with sodium selenate at 0.0, 3.0, 6.0, and 9.0 mg·L–1. Leaf tissues were then analyzed for nutrient content. Boron (P = 0.001) and iron (P = 0.01) content decreased, while selenium (P = 0.001), sulfur (P = 0.001), and potassium (P = 0.001) increased with increasing selenate-Se. Significant quadratic responses were found for calcium (P = 0.02), copper (P = 0.05), magnesium (P = 0.01), and molybdenum (P = 0.01). No differences in leaf fresh or dry weight were detected. Changes in plant nutrient content can be expected when Brassicas are enhanced for delivery of beneficial organic Se.

Free access