Search Results
You are looking at 11 - 20 of 38 items for
- Author or Editor: Craig K. Chandler x
Abstract
Five blueberry interspecific hybrids (3 tetraploids, 1 pentaploid, and 1 hexaploid) and 2 highbush (Vaccinium corymbosum L., 2n = 4x = 48) blueberry clones were crossed in all combinations. Seeds per pollination and seed germination were the criteria used to measure the success of these crosses. The tetraploid interspecific hybrids were fully cross-fertile with the highbush clones and with each other. The pentaploid and hexaploid interspecific hybrids were only partially cross-fertile with the highbush clones and with the tetraploid interspecific hybrids; nonetheless, they still produced an adequate amount of viable seed in most combinations. Significant reciprocal differences in crossability were detected for 4 of the 5 species hybrids.
A greenhouse hydroponic system, which uses suspended plastic troughs, was found to be an efficient system for the production of high quality strawberry (Fragaria ×ananassa) plantlets. In this system micropropagated mother plants of `Oso Grande' and `Sweet Charlie' produced an average of 84 and 80 daughters per mother plant, respectively, in 1996, at a plant density of 3 mother plants/ft2 (32 mother plants/m2). Nearly 100% of the plantlets harvested from the system were successfully rooted in plug trays, and showed no symptoms of leaf or crown diseases.
The demand for plug transplants by the Florida winter strawberry (Fragaria ×ananassa Duch.) industry may increase as water conservation during plant establishment becomes more important and the loss of methyl bromide fumigant makes the production of bare-root transplants more problematic. A study was conducted during the 1995-96 and 1996-97 seasons to determine the effect of container size and temperature conditioning on the plant growth and early season fruit yield of `Sweet Charlie' strawberry plants. Plants in containers of three sizes (75, 150, and 300 cm3) were grown in one of two temperature-controlled greenhouses (35 °C day/25 °C night or 25 °C day/15 °C night) for the 2 weeks just prior to transplanting into a fruiting field at Dover, Fla. Plants exposed to the 25/15 °C treatment had significantly higher average root dry weights at planting in 1995 and 1996 than did plants exposed to the 35/25 °C treatment. Plants exposed to the 25/15 °C treatment also had higher average fruit yields than the plants exposed to the 35/25 °C treatment (48% and 18% higher in 1995-96 and 1996-97, respectively). The effect of container size on plant growth and yield was variable. Plants propagated in the 150- and 300-cm3 containers tended to be larger (at planting) than the plants propagated in the 75-cm3 containers, but the larger container sizes did not result in consistently higher yields.
In greenhouse and field studies, benzyladenine (BA) and gibberellic acid (GA3) applied together as a foliar spray increased runner production in dayneutral strawberries (Fragaria ×ananassa Duch.) but not when applied separately. Runner production increased linearly with increased BA concentration to 1800 mg·L–1. At high dosages, GA3-treated plants produced elongated internodes that, in the field, led to fewer daughter plants. In Florida, daughter plants derived from plants sprayed with the growth regulators increased yield by up to 10% in fruiting experiments. To induce runnering in the field and greenhouse, a treatment with BA at 1200 mg·L–1 and GA3 at 300 mg·L–1 is recommended. Chemical names used: N-(phenylmethyl)-1H-purine-6-amine (benzyladenine); gibberellic acid A3; gibberellic acids A4 and A7.
Containerized strawberry transplants offer an alternative to problematic bare-root transplants, which often have variability in flowering and vegetative vigor. Containerized transplants were propagated in three different container cell sizes (75, 150, and 300 cm3) and grown at two different temperature regimes for 2 weeks prior to planting (25/15 and 35/25°C day/night). Bare-root transplants from Massachusetts and Florida were graded into small, medium, and large plants based on crown size (8, 12, and 16 mm respectively). Plug transplants grown at 25/15°C had greater root dry weights than transplants grown at 35/25°C. Root imaging analysis (MacRHIZO) showed that the differences in dry weight were due to root area, not root tissue density. Crown dry weight increased with increasing cell size. Plug transplants grown at 25/15°C flowered earlier and had greater production than any other treatment. The 75 cm3 cell size grown at 35/25°C produced greater December strawberry production than larger cell sizes at the same temperature regime; however, the 75 cm3 cell size had decreased January strawberry production while the larger cell sizes had increased production. Larger plug cell sizes had significantly greater production than smaller plugs throughout the season, whereas larger bare-roots had greater production only early in the season. Containerized plug transplants therefore offers a viable alternative to problematic bare-root transplants.
Strawberry (Fragaria ×ananassa Duch.) fruit are very susceptible to mechanical injury and for this reason are normally field-packed. Fruit of three cultivars (Chandler, Oso Grande, Sweet Charlie) were subjected to forced-air or hydrocooling to reach pulp temperatures between 1 and 30 °C and then individually subjected to compression and impact forces representative of commercial handling operations. Strawberries with a pulp temperature of 24 °C exhibited sensitivity to compression but greater resistance to impacts. As pulp temperature decreased, fruit were less susceptible to compression as shown by up to 60% reduction in bruise volume. In contrast, strawberries at 1 °C pulp temperature had more severe impact bruising with up to 93% larger bruise volume than at 24 °C depending on the cultivar. Strawberries also showed different impact bruise susceptibility depending on the cooling method. Impacted fruit that were forced-air cooled had larger bruise volumes than those that were hydrocooled. The impact bruise volume for strawberries forced-air cooled to 1 °C was 29% larger than for fruit hydrocooled to 20 °C, 84% higher than those forced-air cooled to 20 °C, and 164% higher than those hydrocooled to 1 °C. Because incidence and severity of impact and compression bruises are temperature-dependent, strawberry growers should consider pulp temperature for harvest scheduling and for potential grading on a packing line. Hydrocooling shows promise to rapidly cool strawberry fruit while reducing weight loss and bruising sensitivity.
Hydrocooling was evaluated as an alternative to forced-air cooling for strawberry (Fragaria × ananassa) fruit. `Sweet Charlie' strawberries were cooled by forced-air and hydrocooling to 4 °C and held in different storage regimes in three different trials. Quality attributes, including surface color, firmness, weight loss, soluble solids, and ascorbic acid content, pH and total titratable acidity, were evaluated at the full ripe stage. Fruit hydrocooled to 4 °C and stored at different temperatures for 8 or 15 days showed overall better quality than forced-air cooled fruit, with significant differences in epidermal color, weight loss, and incidence and severity of decay. Fruit stored wrapped in polyvinylchloride (PVC) film after forced-air cooling or hydrocooling retained better color, lost less weight, and retained greater firmness than fruit stored uncovered, but usually had increased decay. There is potential for using hydrocooling as a cooling method for strawberries.
‘Rubygem’, a new short-day strawberry (Fragaria ×ananassa Duch.), produces high yields of moderately firm, attractive well-flavored fruit from late autumn through early spring in the strawberry-growing district in Southeast Queensland. ‘Rubygem’ is recommended for trial in areas with mild winter climates, especially where rainfall is unlikely and a well-flavored berry is required.