Search Results

You are looking at 11 - 20 of 31 items for :

  • Author or Editor: Craig Chandler x
  • HortScience x
Clear All Modify Search

During the past 10 years, the Florida strawberry growers, through the Florida Strawberry Growers Association, have made a serious commitment to fund university research on strawberries. They have purchased equipment and donated monies for facilities at Dover. They have also helped support a new faculty position in breeding and genetics. During this same period, the University of Florida has made an equally strong commitment to support strawberry research and extension. These commitments are beginning to pay significant dividends for industry and the University. Cultural and pest management information has been generated that is saving the industy money, and the breeding program is developing new cultivars that will keep the industry competitive in the marketplace. The University has benefitted through the acquisition of new facilities, equipment, and faculty and graduate student support.

Free access

During the 1992-93 fruiting season, strawberries were fertigated weekly with 0.28, 0.56, 0.84, 1.12, or 1.40 kg N/ha/day from ammonium nitrate. K was applied uniformly at 0.84 kg/ha/day by fertigation. Irrigation maintained soil moisture tension in the beds between -10 and -15 kPa. Fruit yields responded positively to N fertilization with yields maximized at 0.56 kg N/ha/day. Leaf N and petiole sap nitrate N concentrations increased with N rate with leaf-N for the plants receiving 0.28 kg N/ha/day remaining below 25 g·kg-1 most of the season. Sufficiency ranges for petiole sap nitrate-N quick testing were developed.

Free access

Containerized strawberry transplants offer an alternative to problematic bare-root transplants, which often have variability in flowering and vegetative vigor. Containerized transplants were propagated in three different container cell sizes (75, 150, and 300 cm3) and grown at two different temperature regimes for 2 weeks prior to planting (25/15 and 35/25°C day/night). Bare-root transplants from Massachusetts and Florida were graded into small, medium, and large plants based on crown size (8, 12, and 16 mm respectively). Plug transplants grown at 25/15°C had greater root dry weights than transplants grown at 35/25°C. Root imaging analysis (MacRHIZO) showed that the differences in dry weight were due to root area, not root tissue density. Crown dry weight increased with increasing cell size. Plug transplants grown at 25/15°C flowered earlier and had greater production than any other treatment. The 75 cm3 cell size grown at 35/25°C produced greater December strawberry production than larger cell sizes at the same temperature regime; however, the 75 cm3 cell size had decreased January strawberry production while the larger cell sizes had increased production. Larger plug cell sizes had significantly greater production than smaller plugs throughout the season, whereas larger bare-roots had greater production only early in the season. Containerized plug transplants therefore offers a viable alternative to problematic bare-root transplants.

Free access

Cold-stored (frigo) plants of `Irvine' and `Seascape' and non-chilled plug plants of `Sweet Charlie' and FL 87-123 were planted on August 31 on raised beds covered with white-on-black polyethylene mulch. Very little water was needed for establishment of these plants (compared to that which is normally needed for the establishment of foliated bareroot plants). `Irvine' and `Seascape' produced more runners and were later to initiate fruit production than `Sweet Charlie' and FL 87-123. `Sweet Charlie' and FL 87-123 started producing a small amount of marketable fruit in late October, while `Irvine' and `Seascape' did not produce any marketable fruit until mid and late January respectively.

Free access

Cultivated strawberry (Fragari×ananassa) is a valuable crop, yet has benefitted little from recent advances in biotechnology and genomics. A high-throughput system for transformation and regeneration would hasten elucidation of gene function for strawberry and possibly the Rosaceae in general. In this report, a protocol for high-frequency octoploid strawberry transformation and regeneration is presented. The protocol uses leaf, petiole, and stolon as explants from a newly selected genotype, `Laboratory Festival #9'. This genotype was selected from progeny of a `Strawberry Festival' self-cross exclusively for its rapid regeneration and robust growth in culture. Direct organogenesis has been achieved from the leaf or from prolific callus with multiple shoots being visible in as few as 14 days. Over 100 viable regenerants may be obtained from a single leaf explant of about 3-cm2 size. This laboratory-friendly genotype allows high-throughput, statistically relevant, studies of gene function in the octoploid strawberry genetic background as well as generation of large transgenic populations.

Free access

Plants of `Selva', `Pajaro', and three Univ. of Florida strawberry (Fragaria × ananassa Duch.) selections were grown near Dover, Fla., for five seasons using the annual hill cultural system. Genotype × environment interactions were significant for both marketable yield and fruit weight; therefore, stability analyses were performed. None of the genotypes had consistently high marketable yield, but one of the selections, FL M-1350, had relatively large and stable average fruit size. A genotype was desirable if it had a mean yield (or fruit weight) above the grand mean of all five genotypes, a regression coefficient 1, and a nonsignificant deviation from regression.

Free access

The effect of altered red/far-red light environment on subsequent field performance of strawberry plug plants was tested. Two wavelength-selective plastic films were compared to neutral shade and full-sun control for conditioning `Chandler' strawberry plug plants before transplanting to a winter production system. The following year, plug plants of `Chandler', `Sweet Charlie', and `Allstar' were conditioned under the same treatments, with the addition of a continuous incandescent light and a short-day photoperiod, and plant performance was followed in the winter production system in Florida, a cold-climate annual hill system in Maryland, and in a low-input greenhouse production system. During the first year, the red light-filtering film slightly advanced fruiting in Florida. However, during the second year, the effect of the red light-filtering film was not significant, and a short-day treatment resulted in a greater reduction in runnering and increased early crown and flower development. For June-bearing strawberry plants maintained above 20 °C, altering the red/far-red environment did not consistently advance flowering.

Free access

In west–central Florida, strawberries (Fragaria ×ananassa Duch.) are harvested from early December to late March. The peak harvest occurs at the end of the season and lasts ≈1 month, usually from late February to mid-March. As the peak harvest progresses and temperatures increase, fruit become smaller and the soluble solids content (SSC) of fruit declines. The main objective of this study was to determine whether the progression of peak harvest results in a decline in SSC independent of temperature. In 2007 and 2008, recently opened flowers were tagged in the field on the first week into the peak bloom (WPB) and for 3 additional weeks thereafter. Three days after tagging, plants were transplanted to one of two constant temperature environments (15 or 22 °C). At maturity, the weight, SSC, and fruit development period (FDP) of tagged fruit were recorded. Fruit SSC was lower at the higher temperature (5.2% at 22 °C versus 6.5% at 15 °C) in both years. In 2007, SSC was not correlated with WPB, and in 2008, SSC was positively correlated with WPB at constant temperatures. In addition, the coefficient of determination (r 2) for a regression of SSC on mean temperature over the period 8 days before harvest was 0.73 for fruit harvested from fields between 2003 and 2009. These results indicate that rising temperature is a major factor responsible for the late-season decline of SSC in strawberry fruit in a subtropical production system.

Free access

Eleven clones of Fragaria spp. were tested for resistance to the twospotted spider mite, Tetranychus urticae Koch, at Dover, Fla.; Watsonville, Calif.; and Vancouver, Wash. Ten clones, which had been selected previously as being mite-resistant, had generally the same relative resistance when compared to susceptible `Totem' at all three of the widely separated locations. It appears that Fragaria clones selected for resistance to spider mites at one location likely will be resistant elsewhere, in spite of environmental differences.

Free access