Search Results

You are looking at 11 - 20 of 39 items for

  • Author or Editor: C.C. Reilly x
Clear All Modify Search

The host-parasite interaction between the black pecan aphid (BPA) [Melanocallis caryaefoliae (Davis)] and pecan [Carya illinoensis (Wangenh.) K. Koch] was investigated. Three years of field observations of the ability of BPA populations to induce chlorotic blotches, or visual damage, on 32 pecan cultivars revealed considerable variation in cultivar susceptibility to BPA damage. Among the most commonly grown cultivars, `Sioux', `Cape Fear', `Farley', `Cowley', `Grabohls', and `Barton' exhibited the least damage, whereas `Choctaw', `Oconee', and `Sumner' exhibited the greatest, with `Sioux' and `Choctaw' exhibiting the greatest extremes in susceptibility. Subsequent evaluation indicated that the foliage of pecan genotypes can exhibit an antibiotic-like effect, resulting in the suppression of resident BPA populations. However, the relationship between the degree of this antibiotic effect and the degree of damage exhibited by trees, or field tolerance, was negligible (r = -0.10). For example, while `Choctaw' foliage greatly suppressed BPA population growth, this population was able to inflict relatively severe damage to leaves. An evaluation of feeding preference indicated that BPA alate viviparae (winged females) preferentially feed upon host cultivars on which they have been previously feeding. This feeding preference was eliminated by rinsing leaves with distilled water; hence, a water soluble factor(s) appears to be involved in host preference.

Free access

The host-parasite interaction between the black pecan aphid (BPA) [Melanocallis caryaefoliae (Davis)] and pecan [Carya illinoensis (Wangenh.) K. Koch] was investigated. Three years of field observations of the ability of BPA populations to induce chlorotic blotches, or visual damage, on 32 pecan cultivars revealed considerable variation in cultivar susceptibility to BPA damage. Among the most commonly grown cultivars, `Sioux', `Cape Fear', `Farley', `Cowley', `Grabohls', and `Barton' exhibited the least damage, whereas `Choctaw', `Oconee', and `Sumner' exhibited the greatest, with `Sioux' and `Choctaw' exhibiting the greatest extremes in susceptibility. Subsequent evaluation indicated that the foliage of pecan genotypes can exhibit an antibiotic-like effect, resulting in the suppression of resident BPA populations. However, the relationship between the degree of this antibiotic effect and the degree of damage exhibited by trees, or field tolerance, was negligible (r = -0.10). For example, while `Choctaw' foliage greatly suppressed BPA population growth, this population was able to inflict relatively severe damage to leaves. An evaluation of feeding preference indicated that BPA alate viviparae (winged females) preferentially feed upon host cultivars on which they have been previously feeding. This feeding preference was eliminated by rinsing leaves with distilled water; hence, a water soluble factor(s) appears to be involved in host preference.

Free access

Water stage fruit split (WS) is an erratic and complex problem often causing major crop losses to susceptible pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. This study identified two episodes of WS for `Wichita' pecan—a highly susceptible cultivar. The previously recognized precipitation-induced fruit splitting is the major episode; however, a previously unrecognized precipitation-independent, minor episode can also occured before the major episode. This minor episode was associated with the low solar irradiance and high relative humidity—conditions commonly associated with August rains. The crop characteristics of affected trees also influenced WS in that WS increased as crop load per tree increased. Fruits were also more likely to exhibit WS if located within the lower tree canopy. Treatment of foliage with an antitranspirant immediately before split-inducing conditions increased WS. Maintenance of moist soils for ≈2 weeks before WS-inducing conditions substantially reduced WS-related crop losses. These findings help to explain the erratic nature of WS and indicate that maintenance of trees in a well-watered state for ≈2 weeks before the initiation of shell hardening may substantially reduce WS-related crop losses in certain years.

Free access

Zonate leaf spot (ZLS) [Cristulariella moricola (Hino) Redhead (C. pyramidalis Waterman and Marshall)] on pecan [Carya illinoinensis (Wangenh.) K. Koch.]—associated with unusually wet weather during June, July, and August—occurred across much of Georgia during Summer 1994. Scott–Knott cluster analysis indicated that 27 of 36 evaluated genotypes exhibited little or no field susceptibility to ZLS. `Moneymaker' exhibited the greatest susceptibility of all cultivars studied, with `Cape Fear', `Elliott', `Sumner', and `Sioux' segregating to exhibit moderate susceptibility. An evaluation of commercial orchards indicated susceptibility of major southeastern cultivars as `Desirable' < `Stuart' < `Schley' < `Moneymaker'. Control of ZLS in commercial orchards using standard fungicide spray strategies appeared to be generally ineffective.

Free access

Pecan [Carya illinoinensis (Wangenh.) K. Koch] trees exhibit nickel (Ni) deficiency in certain orchard situations. The symptoms are manifest as either mouse-ear or replant disorder and in certain situations are associated with nematode parasitism. A field microplot study of pecan seedlings treated with either Meloidogyne partityla or Criconemoides xenoplax or both found that parasitism by M. partityla can result in enhancement in the severity of mouse-ear symptoms and a reduction in foliar Ni concentration. The Ni threshold for triggering morphological symptoms in young developing foliage was between 0.265 and 0.862 μg·g–1 dry weight, while the threshold for rosetting was between 0.007 and 0.064 μg·g–1 dw. Results indicate that parasitism by M. partityla is a contributing factor to the induction of Ni deficiency in pecan and raises the possibility that nematode parasitism and Ni nutrition can be contributing factors to many plant maladies.

Free access

Fungal leaf scorch, a potentially devastating disease in pecan [Carya illinoinensis (Wangenh.) K. Koch] orchards, was influenced substantially by irrigation and genotype. Three years of evaluating 76 pecan cultivars revealed that all cultivars exhibited scorch symptoms and that at least three classes of scorch susceptibility existed. Severity of symptoms was also much greater in nonirrigated than irrigated trees, and there were substantial differences in the concentrations of free nitrogenous compounds and free sugars in leaves between irrigated and nonirrigated trees.

Free access

Abstract

‘Sunprince’ peach [Prunus persica (L.) Batsch] has been released to provide a cultivar adapted to the southeastern United States ripening in ‘Redskin’ and ‘Blake’ season with better external color and shape than ‘Redskin’ and higher bacterial spot resistance than ‘Blake’.

Open Access

Abstract

Rooted cuttings of ‘Nemaguard’ peach were grown for 10 months in soil infested with or without Criconemella xenoplax (Raski) Luc and Clitocybe tabescens (Fr.) Bres. Trees were pruned in early December and placed in an unheated greenhouse subject to large temperature fluctuations during the winter. In March, 8 of 9 trees infested with C. xenoplax and all infested with C. xenoplax + C. tabescens showed severe stem cambial browning typical of cold injury and did not leaf out, although the root systems were still viable. All check trees and 7 of 9 trees infested with C. tabescens grew normally, although budbreak in the check trees occurred 2 weeks earlier than those infested. Symptoms were similar to symptoms of cold injury associated with peach trees short life in orchards.

Open Access

Pesticide application in peach (Prunus persica) orchards with a commercial airblast sprayer was compared to that of an air assisted rotary atomizer (AARA), low-volume sprayer during the 2000 through 2003 seasons. The two technologies were employed during early season petal fall applications, shuck split applications and standard cover sprays using phosmet, sulfur, propiconazole, chlorothalonil, azoxystrobin and captan. Ripe fruit, picked 1 day prior to first harvest each season were rated for peach scab (Cladosporium carpophilum), brown rot (Monilinia fructicola), insect (Hemipteran) damage (cat facing), and blemishes. Differences in brown rot, insect damage, and blemish ratings were not detected between the treatments for each of the four seasons. Differences were detected during the 2000 and 2001 seasons for peach scab, with the AARA sprayer plots having a higher incidence. Spray coverage was quantitatively evaluated with Rhodamine B dye by leaf rinses that indicated there was equivalent coverage for each application method. Phosmet residue detection on trees of the treated rows was also equivalent from each method. Phosmet off-target spray movement (drift) was reduced 59% one row away from the treated row and 93% in the fifth row from the treated row by the AARA sprayer compared to airblast sprayer drift.

Full access

Leaf surface compounds of pecan [Carya illinoensis (Wangenh.) C. Koch] were analyzed with regard to developmental stage and to susceptibility to infection by Cladosporium caryigenum (Ell. et Lang. Gottwald). Immature and mature leaves of two resistant (`Elliott' and `Sumner') and two susceptible (`Wichita' and `Schley') cultivars were extracted with methylene chloride. Extracts were separated by silicic acid chromatography into polar and nonpolar fractions. Constituents of each fraction were subsequently separated by gas chromatography and were identified by gas chromatography-mass spectroscopy. Leaf surface constituents characterized included long-chain aliphatic hydrocarbons, aliphatic wax esters, triterpenoid constituents, aliphatic alcohols, fatty acids, and diacyl glycerides. The predominant surface compounds on immature leaves were lipids such as fatty acids, fatty alcohols, and glycerides. On mature leaves, lipids declined and aliphatic hydrocarbons and triterpenoids became predominant leaf surface constituents. The changes were observed for all cultivars, regardless of genotypic response to C. caryigenum. Thus, we conclude that cuticular chemicals change dramatically during leaf maturation but do not correlate with resistance to scab disease common to certain pecan cultivars.

Free access