Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: Barbara L. Goulart x
Clear All Modify Search

Aluminum and P interactions were investigated in mycorrhizal (M) and nonmycorrhizal (NM) highbush blueberry plantlets in a factorial experiment. The toxic effects of Al on highbush blueberry were characterized by decreased shoot, root, and total plant dry weight. Many of the negative effects of Al on plant root, shoot, and total dry-matter production were reversed by foliar P and N application, indicating P or N uptake were limited by high Al concentration. However, Al mediated growth reduction in P-stressed plants suggested that the restriction of P uptake by high Al may not have been the only mechanism for Al toxicity in this experiment. Root Al and P concentration were negatively correlated in NM plantlets but not in M plantlets, suggesting mycorrhizal infection may alter P uptake processes. Al uptake also was affected by M infection, with more Al accumulating in M plantlet roots and leaves. Correlations among foliar ion concentrations were also affected by M fungal infection.

Free access

The ability of mycorrhizal and nonmycorrhizal `Elliott' highbush blueberry (Vaccinium corymbosum L.) plants to acquire soil N under different preplant organic soil amendment regimes (forest litter, rotted sawdust, or no amendment) was investigated in a field experiment using 15N labeled (NH4)2SO4. Plants inoculated with an ericoid mycorrhizal isolate, Oidiodendron maius Dalpé (UAMH 9263), had lower leaf 15N enrichment and higher leaf N contents than noninoculated plants but similar leaf N concentrations, indicating mycorrhizal plants absorbed more nonlabeled soil N than nonmycorrhizal plants. Mycorrhizal plants produced more plant dry weight (DW) and larger canopy volumes. The effect of preplant organic amendments on the growth of highbush blueberry plants was clearly demonstrated. Plants grown in soil amended with forest litter produced higher DW than those in either the rotted sawdust amendment or no amendment. Plants grown in soils amended preplant with sawdust, the current commercial recommendation, were the smallest. Differences in the carbon to nitrogen ratio were likely responsible for growth differences among plants treated with different soil amendments.

Free access

The effects of preharvest applications of pyrrolnitrin (a biologically derived fungicide) on postharvest longevity of `Bristol' black raspberry (Rubus occidentals L.) and `Heritage' red raspberry [R. idaeus L. var. strigosus (Michx.) Maxim] were evaluated at two storage temperatures. Preharvest fungicide treatments were 200 mg pyrrolnitrin/liter, a standard fungicide treatment (captan + benomyl or iprodione) or a distilled water control applied 1 day before first harvest. Black raspberries were stored at 18 or 0 ± lC in air or 20% CO2. Red raspberries were stored at the same temperatures in air only. Pyrrolnitrin-treated berries often had less gray mold (Botrytis cinerea Pers. ex Fr.) in storage than the control but more than berries treated with the standard fungicides. Storage in a modified atmosphere of 20% CO2 greatly improved postharvest quality of black raspberries at both storage temperatures by reducing gray mold development. The combination of standard fungicide or pyrrolnitrin, high CO2, and low temperature resulted in more than 2 weeks of storage with less than 5% disease on black raspberries; however, discoloration limited marketability after≈ 8 days under these conditions. Chemical names used: 3-chloro-4-(2'-nitro-3'-chlorophenyl) -pyrrole (pyrrolnitrin); N-trichloromethylthio-4-cyclohexene-l12-dicarboximide (captan); methyl 1-(butylcarbamoyl) -2-benzimidazolecarbamate) (benomyl); 3-(3,5 -dichlorophenyl) -N-(l-methylethyl -2,4-dioxo-l-imi-dazolidinecarboxamide (Rovral, iprodione).

Free access