Search Results

You are looking at 11 - 20 of 22 items for

  • Author or Editor: Akira Sugiura x
Clear All Modify Search

A method for collecting the vacuolar contents of intact tannin and parenchyma cells of persimmon (Diospyros kaki Thunb.) fruit using a micropipette was developed. Thin sections of the mesocarp tissue from mature persimmon fruit, `Miyazaki-mukaku' and `Hiratanenashi', were placed on a glass slide. Using a micromanipulator and an inverted microscope, a micropipette was inserted into a vacuole and its contents were withdrawn. A 5-nL sample of vacuole sap was collected per tannin cell from `Hiratanenashi' and 7 nL from `Miyazaki-mukaku', whereas only 2 nL was withdrawn from adjacent parenchyma cells. Analyses of the vacuolar sap revealed that the tannin cells of both cultivars contained 10% to 12% (m/v) of tannin as (+)-catechin equivalents and 10% to 13% (m/v) of soluble sugars, whereas the parenchyma cells contained trace amounts of tannins and ≈20% of soluble sugars. Tannin cells contain only a slight amount of sucrose, in contrast to a relatively large amount in parenchyma cells.

Free access

5S ribosomal DNA (rDNA) was visualized on the somatic metaphase chromosome of persimmon (Diospyros kaki) and ten wild Diospyros species by fluorescent in situ hybridization (FISH). The digoxigenin (DIG)-labeled 5S rDNA probe was hybridized onto the chromosomes and visualized by incubation with anti-DIG-fluorescein isothiocyanate (FITC). Strong signals of 5S rDNA probe were observed on several chromosomes of Diospyros species tested. Furthermore, multicolor FISH using 5S and 45S rDNA probes differently labeled with DIG and biotin, revealed separate localization of the two rDNA genes on different chromosomes of Diospyros species tested, suggesting that 5S and 45S rDNA sites can be used as chromosome markers in Diospyros. The number of 5S rDNA sites varied with the Diospyros species. More 5S rDNA sites were observed in four diploid species native to Southern Africa than in three Asian diploid species. The former had four or six 5S rDNA sites while the latter had two. Three Asian polyploidy species had four to eight 5S rDNA sites. Among the Asian species, the number of 5S rDNA sites seemed to increase according to ploidy level of species. These features of 5S rDNA sites were very similar to those of 45S rDNA sites in Diospyros. Phylogenetic relationship between D. kaki and wild species tested are discussed based on the number and chromosomal distribution of 5S and 45S rDNA.

Free access

Flower bud differentiation and the flowering habit of durian (Durio zibethinus Murray) `Mon Thong' from budbreak to anthesis were investigated at the Chantaburi Horticultural Research Center in Thailand. Clusters of flower buds appeared at the end of November on primary or secondary scaffold branches near where a flower cluster occurred the previous year. Anatomical observations revealed that the development of floral organs was acropetal; the five fused epicalyx forming a large, elongated envelope enclosing the sepals, petals, stamen and fused multi-carpellate pistil. Floral organ development was completed in early January. The mature flower bud more than doubled in size one day before anthesis, with anthesis starting around 1600 hr and ending ≈1900 hr. The anthers did not dehisce until the completion of flowering. This change induced heterostyly in this cultivar, which promoted out-crossing by reducing the possibility of self-pollination. Aromatic nectar that attracted insects to the flower was secreted during anthesis. This is the first report to have clarified the overall flowering process in durian and provides the basic information for elucidating reproductive biology of durian in future research.

Free access

To produce nonaploid Japanese persimmon (Diospyros kaki L.f.) by artificial hybridization, we surveyed the natural occurrence of unreduced (2n) pollen among hexaploid cultivars and sorted them from normal reduced (n) pollen. The sorted 2n pollen was crossed with a hexaploid female cultivar and the resultant embryos were rescued by in vitro culture techniques to obtain plantlets. Three out of six male-flower-bearing cultivars (2n = 6x = 90) produced 2n pollen at rates of 4.8% to 15.5% varying with the cultivar, which was estimated by both pollen size and flow cytometry. After sorting giant (2n) from normal pollen grains by using nylon mesh, they were crossed with a hexaploid female cultivar. The seeds obtained from pollination with normal pollen were perfect, but those obtained from pollination with giant pollen were mostly imperfect, with embryo growth being suspended at the globular stage. Although the rate of survival was very low, some embryos at the globular stage were rescued successfully and grown in vitro. Both flow cytometric analysis and chromosome counting proved that the plantlets obtained were nonaploid.

Free access

Japanese persimmon (Diospyros kaki Thunb.) cultivars are classified into four types depending upon the nature of astringency loss of the fruit. Among them, the pollination-constant and nonastringent (PCNA) type is the most desirable for fresh fruit consumption due to the trait of stable loss of astringency on the tree with fruit development. Lack of tannin accumulation is the main cause of natural astringency loss in PCNA-type fruit, and is qualitatively inherited. The PCNA trait is recessive to the non-PCNA trait. In this study, we investigated amplified fragment length polymorphism (AFLP) markers for the trait of natural astringency loss of PCNA-type fruit using bulked segregant analysis (BSA) for efficient selection of PCNA type plants in a breeding population. A total of 128 primer combinations were tested and one AFLP marker was found to be linked to the dominant allele controlling the trait for astringency. This marker, EACC/MCTA-400, was absent in all of the PCNA-type plants tested, whereas it was present in about half of the non-PCNA-type plants tested. However, RFLP analysis using this marker enabled the detection of the other dominant allele, and all PCNA-type plants could be distinguished from the non-PCNA-type plants. Application of this marker system will be useful for the selection of PCNA-type plants in persimmon breeding.

Free access

Self-compatible cultivars of Japanese apricot (Prunus mume Sieb. et Zucc.) have a horticultural advantage over self-incompatible ones because no pollinizer is required. Self-incompatibility is gametophytic, as in other Prunus species. We searched for molecular markers to identify self-compatible cultivars based on the information about S-ribonucleases (S-RNases) of other Prunus species. Total DNA isolated from five self-incompatible and six self-compatible cultivars were PCR-amplified by oligonucleotide primers designed from conserved regions of Prunus S-RNases. Self-compatible cultivars exhibited a common band of ≈1.5 kbp. Self-compatible cultivars also showed a common band of ≈12.1 kbp when genomic DNA digested with HindIII was probed with the cDNA encoding S 2-RNase of sweet cherry (Prunus avium L.). These results suggest that self-compatible cultivars of Japanese apricot have a common S-RNase allele that can be used as a molecular marker for self-compatibility.

Free access

Japanese persimmon (Diospyros kaki Thunb.) cultivars are classified into four types depending on the nature of astringency loss of the fruit. The pollination-constant, non-astringent (PCNA) persimmons lose their astringency on the tree as the fruits develop. This PCNA trait is qualitatively inherited and recessive to the other three types, pollination-constant, astringent (PCA), pollination-variant, nonastringent (PVNA), and pollination-variant, astringent (PVA). In fact, crosses among Japanese PCNA cultivars yield only PCNA type in F1 generation as shown in recent breeding programs at the National Institute of Fruit Tree Science. Despite these previous results, we demonstrated here that non-PCNA (PVNA, PVA, and PCA) type offspring were derived at relatively high rates in the F1 generation from a cross between `Luo Tian Tian Shi', a PCNA accession from China, and the Japanese PCNA cultivar, `Taishu', despite the fact that `Luo Tian Tian Shi' was confirmed to be a true PCNA type by measuring tannin cell size, a principal morphological characteristic to distinguish PCNA cultivars from non-PCNA ones. When segregations of tannin cell size and tannin content in three progenies of the breeding populations derived from Chinese PCNA `Luo Tian Tian Shi' × Japanese PCNA `Taishu', Japanese PCNA `Shinshu' × Japanese PCNA `Taishu', and Japanese PVNA (non-PCNA) `Kurokuma' × Japanese PCNA `Taishu' were investigated, all offspring between Japanese PCNA cultivars contained only small tannin cells and were PCNA types, and those between Japanese PVNA × PCNA cultivars contained only large tannin cells and were non-PCNA types. However, hybrids between `Luo Tian Tian Shi' and `Taishu' segregated into populations of small and large tannin cells, indicating that `Luo Tian Tian Shi' is likely heterozygous for astringency. Therefore, Chinese PCNA `Luo Tian Tian Shi' should be different from Japanese PCNA cultivars in genetic makeup.

Free access

In persimmon, plant regeneration from cultured cells usually takes place through adventitious bud formation. If somatic embryogenesis were possible, the efficiency of mass propagation and genetic engineering would be greatly improved. We attempted to induce somatic embryogenesis from immature embryos and plant regeneration from the induced embryos. Hypocotyls and cotyledons from immature ‘Fuyu’ and ‘Jiro’ seeds were cultured in the dark in Murashige and Skoog medium solidified with gellan gum and supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BA) at various concentrations. Callus formation started at ≈2 weeks of culture, and the callus formation rate was highest at 3 or 10 μm combinations of 2,4-D and BA. The initially formed calli gradually became brown or black from which white embryogenic calli (EC) appeared secondarily. After ≈8 weeks of culture, globular embryos were formed from these EC, and the formation proceeded until 20 weeks of culture. Formation of globular embryos was higher with ‘Fuyu’ than ‘Jiro’, especially with hypocotyls. When EC with globular embryos were transferred to fresh medium with no plant growth regulators, ≈70% developed to the torpedo-type embryo stage in 6 weeks. The torpedo-type embryos thus formed were germinated and rooted in agar medium with or without zeatin in several weeks without entering dormancy. After germination and rooting, the plantlets were transferred to the same medium and acclimatized for another 4 weeks. As the embryos germinated and rooted simultaneously, the plantlets were easy to grow in pots without transplanting shock. This is the first report on plant regeneration through somatic embryogenesis of persimmon.

Free access

Head and leaf weight of cabbage plants grown using half the nitrogen fertilizer applied to control plants (hereafter referred to as the half treatment) were markedly less than those obtained for control plants to which the standard amount of nitrogen fertilizer was applied. Sugar content 33 d after sowing (DAS) did not differ between treatments, but glucose and fructose content in the half treatment 82 DAS was higher than that of the control. Although the number of cell layers in cross-section for the leaves from both treatments was ≈20, cells from the half treatment appeared smaller than those of the control. Therefore, it is suggested that the higher sugar content in leaves of cabbage plants grown on media containing less nitrogen fertilizer occurs in response to the smaller cells in the leaves.

Free access

This report identifies S-RNases of sweet cherry (Prunus avium L.) and presents information about cDNA sequences encoding the S-RNases, which leads to the development of a molecular typing system for S-alleles in this fruit tree species. Stylar proteins of sweet cherry were surveyed by two dimensional polyaclylamide gel electrophoresis (2D-PAGE) to identify S-proteins associated with gametophytic self-incompatibility. Glycoprotein spots linked to S-alleles were found in a group of proteins which had Mr and pI similar to those of other rosaceous S-RNases. These glycoproteins were present at highest concentration in the upper segment of the mature style and shared immunological characteristics and N-terminal sequences with those of S-RNases of other plant species. cDNAs encoding these glycoproteins were cloned based on the N-terminal sequences. Genomic DNA and RNA blot analyses and deduced amino acid sequences indicated that the cDNAs encode S-RNases; thus the S-proteins identified by 2D-PAGE are S-RNases. Although S1 to S6 -alleles of sweet cherry cultivars could be distinguished from each other with the genomic DNA blot analysis, a much simpler method of PCR-based typing system was developed for the six S-alleles based on the DNA sequence data obtained from the cDNAs encoding S-RNases.

Free access