Search Results

You are looking at 11 - 20 of 27 items for :

  • Author or Editor: A. Abdul-Baki x
  • HortScience x
Clear All Modify Search

Tomato (Lycopersicon esculentum Mill., cv. Sunny) plants were grown in a sustainable agricultural system of mulches: black plastic, paper, hairy vetch, crimson clover, and hairy vetch + rye. Total yields were highest with hairy vetch (85.8 t ha-1) and lowest with paper mulch (30.0 t ha-1). The low fertilizer input hairy vetch, crimson clover and hairy vetch + rye treatments received one-half the N-P-K fertigation that was applied to other treatments. Immediately before mowing the cover crops, samples were analyzed. Five weeks after transplanting the tomatoes and at the end of 12 weeks, leaf samples were analyzed for macro- and micro-nutrients. Results of the cover crop analyses indicated minimal differences in N, P, K, Ca, Mg, Mn, B, and Fe concentrations. Tomato leaf analyses at 5 weeks after field planting showed that, among the macro-nutrients, only K was significantly higher in the hairy vetch, hairy vetch + rye, crimson clover, and black plastic treatments than in bare soil and paper mulch. End-of-season leaf analyses showed that significantly higher K was found in the vetch + rye treatment compared to all other treatments.

Free access

Susceptibility of tomato (Lycopersicon esculentum Mill) genotpyes to the root-knot nematode Meloydogyne incognita and to heat stress can be evaluated in a single labor- and time-saving operation using a nondestructive in vitro excised root technique. Seeds are sterilized and germinated for 2 days on 1% water agar. Five-mm root sections are grown at 28 and 35 C for 30 days on Gamborg-B medium with and without nematode inoculum. Evaluation criteria include fresh and dry weight and the appearance of juveniles, adults, gulls, and egg masses. Evidence will be presented on the breakdown of resistance to M. incognita under high temperature stress.

Free access

Resistance to root-knot nematodes (Meloidogyne spp.) in tomato (Lycopersicon esculentum Mill.) plants has been reported to break down at soil temperatures >28C. We evaluated in vitro root explants of tomato heterozygous (Mimi), homozygous (MiMi) at the Mi locus, or lacking the Mi-1 gene for resistance to Meloidogyne incognita (Kofoid & White) Chitwood and Meloidogyne arenaria (Neal) Chitwood at 28, 31, 34, and 37C. Genotypes Ace-55 UF and Rutgers, lacking the dominant allele, were susceptible to M. incognita and M. arenaria at all temperatures. Genotypes possessing the dominant allele (heterozygous or homozygous) were equally resistant to both nematode species. The resistance level in these genotypes was maintained fully at 31C, partially maintained at 34C, and lost at 37C. Resistance in the heat-tolerant Mi-heterozygous accession CLN 475-BC1F2-265-4-19 was not different from that of the heat-sensitive genotypes. As temperature increased, the genotypes differed in their sensitivity to resistance conferred by the Mi-1 locus.

Free access

It is known that, in a number of plant tissues, the diffusivity of water vapors is larger than that of CO2. We have measured the water potential of both intact potato (Solomon tuberosum, cv. Russet Burbank) tubers, using a Wescor due point probe, and tissue slices, using the liquid exchange method. The water potential measured by both methods was similar. The results show that the diffusivity of water vapors is larger than that of CO2. The difference in diffusivity between CO2 and water vapors is attributed to a simultaneous loss of water through diffusion and surface evaporation. The results indicate that the contribution of the latter mechanism to water loss is more significant than simple diffusion.

Free access

A 3-year experiment was conducted to determine the optimum fertilizer N requirements of fresh-market tomato (Lycopersicon esculentum Mill.) `Sunbeam' grown on a hairy vetch (Vicia villosa Roth.) or black polyethylene mulch. In 1993 and 1994, four rates of fertilizer N (0, 56, 112, and 168 kg·ha-1) as water-soluble NH4NO3 were applied in 14 equal applications through the trickle irrigation system starting 1 week after planting. Four additional rates (224, 280, 336, and 392 kg·ha-1) were applied in 1995 to assess the plant response to supra-optimal levels of N. Hairy vetch produced 3.3–4.5 t·ha-1 of above-ground biomass and a total N content of 126–169 kg·ha-1 in the above-ground biomass. Leaf N content at 7 weeks after transplanting of tomatoes correlated positively with yield from black polyethylene but did not correlate with yield from the hairy vetch plots where leaf N content was optimal at all N rates. Predicted tomato yields were higher for the hairy vetch than for the black polyethylene treatment at all applied N rates in all years. Tomatoes grown in black polyethylene required N at 130 to 144 kg·ha-1 to achieve yields equivalent to those grown following unfertilized hairy vetch. Tomato yield increased in response to applied N in both mulches in all 3 years; optimum N rates of 89 and 190 kg·ha-1 in hairy vetch and black polyethylene, respectively, were predicted by a linear plateau model, and 124 and 295 kg·ha-1 by a quadratic plateau model. The linear plateau model is recommended because it would allow less N to become available for runoff and leaching.

Free access

Approximately 90% of total date production in the U.S. is localized in the Coachella Valley, southwest California. The remainder is in the bordering Imperial Valley, Calif., and Yuma, Ariz. The date trees (Phoenix dactylifera L.) occupy 2282 ha, have an annual yield of 24,000 tons, and a product value of $62 million. Major varieties include `Deglet Noor', `Khadrawl', `Zahide', and `Majhool'. Although climatic requirements for date production prevail in the Valley, major problems related to soil and water have adverse effects on yield and fruit quality. These include water and soil salinity, high water table, high soil compaction and stratification, and low fertility. Slip plowing has been a recommended practice for decompacting the soil. However, soils get recompacted by machinery used in cultural operations. We recently introduced planting cover crops in a no-till system to improve soil fertility, reduce compaction, and improve drainage.

Free access

Cover crops combined with conservation tillage practices can minimize chemical inputs and improve soil quality, soil water-holding capacity, weed suppression and crop yields. No-tillage production of sweet corn (Zea mays var. `Silver Queen') was studied for 2 years at the USDA Beltsville Agricultural Research Center, Md., to determine cover crop management practices that maximize yield and suppress weeds. Cover crop treatments were hairy vetch (Vicia villosa Roth), rye (Secale cereale L.) and hairy vetch mixture, and bare soil (no cover crop). There were three cover crop killing methods: mowing, rolling or contact herbicide paraquat. All plots were treated with or without atrazine and metolachlor after planting. There was a 23% reduction in sweet corn plant population in the rye-hairy vetch mixture compared to bare soil. Averaged over both years, sweet corn yield in hairy vetch treatments was 43% greater than in bare soil, whereas yield in the rye-hairy vetch mixture was 30% greater than in bare soil. There were no significant main effects of kill method or significant interactions between kill method and cover crop on yield. Sweet corn yields were not different for hairy vetch or rye-hairy vetch treatments with or without atrazine and metolachlor. However, yield in bare soil without the herbicides atrazine and metolachor were reduced by 63% compared to bare soil with these herbicides. When no atrazine and metolachlor were applied, weed biomass was reduced in cover crops compared to the bare soil. Regression analysis showed greater yield loss per unit of weed biomass for bare soil than for the vetch or rye-hairy vetch mixture. This analysis suggests that cover crops increased sweet corn yield in the absence of atrazine and metolachlor not only by reducing weed biomass, but also by increasing the competitiveness of corn to weeds at any given biomass.

Free access

Ground covers in orchards and living mulches in vegetable fields can be effective in reducing weed control costs and loss of water and nutrients from the soil, fixing N, and adding organic matter to the soil. Several accessions of rhizoma (perennial) peanut were evaluated in 1999, 30 months after planting, at the farm of the Tropical Research and Education Center, Univ. of Florida, Homestead, in gravelly, calcareous soil with a pH of 7.5. Evaluation criteria included adaptability (plant vigor, rhizome growth, and biomass yield), weed suppression, N-fixation, nutrient content, leaf density, and Fe chlorosis. Accessions that survived exhibited major differences in the evaluation criteria. Accessions No. 6968 and 4222 (recently named `Amarillo') showed promising potential for use as ground cover and a living mulch in vegetable fields in southern Florida.

Free access

A 3-year experiment was conducted to identify problems in Coachella Valley date palm (Phoenix dactylifera) orchards that limit vegetative growth, yield, and fruit quality. Major problems that were identified included soil compaction and stratification that restrict water permeation into the root zone, and low fertility as reflected by the low organic -matter content of the sandy soils. To eliminate the impact of these stresses on plant growth, yield, and fruit quality, a no-tillage alternative management system was introduced to replace the conventional practice of tillage that compacts the soil. No-till was coupled with the use of cover crops to enrich the soil with organic matter, fix N, recycle nutrients, and improve water holding capacity of the sandy soil. In already established orchards, an additional treatment—slip plowing—was also implemented to loosen the soil at lower depths to facilitate water permeation. The positive effects of the alternative system on the soil, tree growth, yield, and fruit quality will be presented.

Free access

In the quest to produce tomatoes without using methyl bromide, cover crops including sunnhemp, cowpea, hairy vetch, and sorghum sudan were planted on calcareous gravelly soils of southern Florida in Oct. 1998. These crops, singly or in mix, were grown on raised beds for 3 months before they were mowed down with no tillage. Sorghum sudan was plowed down and covered with plastic mulch, a conventional farming practice. In addition, uncropped plots fertilized with 6 N–2.6P–10K at 0 or 1124 kg·ha–1 were either treated with or without methyl bromide-chloropicrin and plowed down. `Sanibel' tomatoes (Lycopersicon esculentum Mill) were transplanted in two plant densities (one row vs. two rows on a bed) immediately after mowing. Tomatoes were fertigated with 112 N and 186 K kg·ha–1 during the growing season. Sunnhemp biomass alone or in mix with cowpea was higher than any other treatment. Biomass of sorghum sudan and hairy vetch were lowest. Canopy coverage, nutrient content of cover crops, and their effects on tomato growth, nutrient content, and yield will be discussed.

Free access