Search Results
Wastewaters from farm and composting operations are often rich in certain nutrients that can be reutilized in crop production. Liners of silverleaf dogwood (CornusalbaL. `Argenteo-marginata'), common ninebark [Physocarpusopulifolius(L.) Maxim.], and `Anthony Waterer' spirea (Spiraea×bumaldaBurvenich) were grown in 6-L containers filled with a medium consisting of 73% bark, 22% peat, and 5% pea gravel, by volume. Plants were fertigated daily via a computer-controlled multi-fertilizer injector with three recirculated fertilizer treatments: 1) a stock solution with macro- and micronutrients, electrical conductivity (EC) 2.2 dS·m-1; 2) wastewater from a mushroom farm; and 3) process wastewater from anaerobic digestion of municipal solid waste. The wastewaters used in both treatments 2 and 3 were diluted with tap water, and the computer was programmed to amend, dispense, and recirculate nutrients, based on the same target EC as in treatment 1. For comparison, there was a traditional controlled-release fertilizer treatment [Nutryon 17–5–12 (17N–2P–10K) plus micronutrients incorporated into the medium at a rate of 6.5 kg·m-1, nutrients not recirculated]. All three species responded similarly to the three recirculated fertilizer treatments. Growth in the recirculated treatments was similar and significantly higher than that obtained with controlled-release fertilizer. A similar trend in EC was observed in the media near harvest. Throughout the study, there was no sign of nutrient toxicity or deficiency with any of the species or treatment.
Abstract
Foliar sprays of (2-chloroethyl)phosphonic acid (ethephon) were applied at 50, 100, and 150 ppm to French prune trees at 50% petal fall and when seed length was 8.3 to 9.4 mm. All concentrations thinned fruits within 3 to 4 weeks after treatment. The treatments increased soluble solids and fruit size, and in some instances decreased dry tonnage. Return bloom the following year was greater on treated trees than on controls. Also, fall coloration patterns appeared earlier on the treated trees. No phytotoxic effects from the treatments were evident on the fruits.
Cultivar and planting site are two factors that often receive minimal attention, but can have a significant impact on the quality of apple (Malus ×domestica) produced. A regional project, NE-183 The Multidisciplinary Evaluation of New Apple Cultivars, was initiated in 1995 to systematically evaluate 20 newer apple cultivars on Malling.9 (M.9) rootstock across 19 sites in North America. This paper describes the effect of cultivar and site on fruit quality and sensory attributes at a number of the planting sites for the 1998 through 2000 growing seasons. Fruit quality attributes measured included fruit weight, length: diameter ratio, soluble solids concentration (SSC), titratable acidity (TA), flesh firmness, red overcolor, and russet. Fruit sensory characteristics rated included crispness, sweetness, and juiciness, based on a unipolar intensity scale (where 1 = least and 5 = most), and acidity, flavor, attractiveness, and desirability based on a bipolar hedonic scale (where 1 = dislike and 5 = like extremely). All fruit quality and sensory variables measured were affected by cultivar. The two-way interaction of cultivar and planting site was significant for all response variables except SSC, TA, russet, crispness, and sweetness ratings. The SSC: TA ratio was strongly correlated with sweetness and acidity sensory rating, but was weakly correlated with flavor rating. The results demonstrate that no one cultivar is ideally suited for all planting sites and no planting site is ideal for maximizing the quality of all apple cultivars.