Browse

You are looking at 1 - 10 of 28,524 items for

Open access

Géza Bujdosó, Attila Fodor and Anita Karacs-Végh

Open access

Adam D. Karl, Michael G. Brown, Sihui Ma, Ann Sandbrook, Amanda C. Stewart, Lailiang Cheng, Anna Katharine Mansfield and Gregory M. Peck

Yeast assimilable nitrogen (YAN) can be a limiting nutritional factor for Saccharomyces cerevisiae yeast when fermenting apple (Malus ×domestica Borkh.) juice into hard cider. Endogenous YAN concentrations in apples are often below the recommended thresholds to completely use all of the fermentable sugar and minimize the production of off-flavors, such as hydrogen sulfide. Cider producers supplement apple juice with exogenous nitrogen to increase YAN. Urea, commonly applied to apple orchards to increase fruit size and yields, was tested for its ability to increase endogenous apple juice YAN. Starting 6 weeks before harvest in 2017 and 2018, a 1% urea solution was applied to ‘Red Spy’ apple trees one, three, or five times to create low-, medium-, and high-rate treatments, respectively. Relative to the control, the high treatment increased YAN by 229% in 2017 and by 408% in 2018. More than 90% of the YAN in all juice samples was composed of primary amino nitrogen (PAN). Among all treatments, PAN mostly comprised asparagine, and as urea applications increased, the relative concentration of asparagine also increased. Aspartic acid and then glutamic acid were the second and third most abundant amino acids in all treatments, respectively, but comprised less of the total PAN as the number of urea applications increased. Soluble solid concentration, pH, titratable acidity, and total polyphenol concentration were not different among treatments. There was a positive correlation between increased urea application rate and the maximum fermentation rate, which resulted in a shorter fermentation duration. Increasing the number of urea applications was also correlated with greater hydrogen sulfide (H2S) production in juice fermented from fruit harvested in 2017 but not for fruit harvested in 2018. No residual H2S was found in the finished cider from any treatment. Increasing the number of urea applications was estimated to be less expensive than supplementing the juice with Fermaid O™. There would have been no cost savings if Fermaid K™ was used as an exogenous nitrogen source. Foliar urea applications were estimated to be more expensive than supplementing juice with diammonium phosphate. This study demonstrated that foliar urea applications can effectively increase YAN concentration in cider apples while not negatively affecting other juice quality attributes.

Open access

Adam D. Karl, Michael G. Brown, Sihui Ma, Ann Sandbrook, Amanda C. Stewart, Lailiang Cheng, Anna Katharine Mansfield and Gregory M. Peck

The recent growth in the U.S. hard-cider industry has increased the demand for cider apples (Malus ×domestica Borkh.), but little is known about how to manage orchard soil fertility best to optimize horticultural performance and juice characteristics for these cultivars. To assess whether nitrogen fertilizer applied to the soil can improve apple juice and cider quality, calcium nitrate (CaNO3) fertilizer was applied at different rates to the soil beneath ‘Golden Russet’ and ‘Medaille d’Or’ trees over the course of three growing seasons. The experiment started when the trees were in their second leaf. The trees were cropped in their third and fourth leaf. At the end of the first growing season of the experiment, the greatest fertilizer rate increased tree trunk cross-sectional area (TCSA) by 82% relative to the control, but this difference did not persist through to the end of the study. Yield and crop load were unaffected by the nitrogen fertilization treatments. Increasing the nitrogen fertilizer rate correlated positively with more advanced harvest maturity in ‘Golden Russet’ fruit, which resulted in greater soluble solid concentration (SSC). Fruit from the greatest fertilizer rate treatment had an average starch pattern index (SPI) that was 1 U greater than in the control, and an SSC that was 3% greater than the control. The fertilizer treatments did not affect juice pH, titratable acidity (TA), or total polyphenol concentrations. Yeast assimilable nitrogen (YAN) concentrations were increased by nitrogen fertilization for both cultivars in both harvest years. The greatest fertilizer treatment increased juice primary amino nitrogen by 103% relative to the control. Greater nitrogen fertilization rates correlated positively with less hydrogen sulfide production during the fermentation of ‘Golden Russet’ juice from the first, but not the second, harvest. During the first year, cumulative hydrogen sulfide production for the ‘Golden Russet’ control treatment was 29.6 μg·L–1 compared with the ‘Golden Russet’ high treatment, which cumulatively produced 0.1 μg·L–1. Greater maximum fermentation rates and shorter fermentation durations correlated positively with increased fertilization rate for both cultivars after the second harvest. High treatment fermentations had maximum fermentation rates 110% greater, and fermentation durations 30% shorter than the control. Other horticultural and juice-quality parameters were not affected negatively by the CaNO3 treatments. In orchards producing apples specifically for the hard-cider industry, nitrogen fertilizer could increase juice YAN, thus reducing the need for exogenous additions during cider production.

Open access

Ying-Chun Chen, Chen Chang and Huey-Ling Lin

Passion fruit is a commercial crop of economic importance worldwide, with recent increases in demand for high-quality plants for commercial production. Plant tissue culture is widely used for the mass propagation of many commercial crops, however its application on passion fruit is challenged by the problem of low reproducibility, leaf chlorosis, and growth retardation resulted from in vitro culture. The aim of this study was to evaluate the effects of cytokinins and light quality on in vitro culture of nodal segments of passion fruit ‘Tainung No. 1’. Three aromatic cytokinins were tested in a modified MS basal medium. The bud proliferation rates of segments initiated on a media containing 1 mg·L−1 meta-topolin riboside (mTR) or benzyladenine (BA) were not significantly different at the same concentration. Buds cultured on medium supplemented with mTR grew and elongated for 4 weeks, while buds on a medium containing BA formed rosettes. After transfer to a medium without plant growth regulators (PGRs), shoots rooted spontaneously within 8 weeks. Furthermore, the effects of continuous propagation under a high proportion of red light affected the subsequent plant growth. Red LED induced an increase in the chlorophyll content (2.71 mg·g−1) compared with other light qualities (1.05–2.63 mg·g−1) and improved plantlet quality. Acclimated plants were grown in the field, and the flower morphology and fruit set were of commercial quality. Findings showed that replacing BA with mTR as the main cytokinin and using a high proportion of red light during the tissue culture induction period produced high-quality plantlets in 3 months. This system is economical and will be further developed for the commercial propagation of passion fruit vines in the future.

Open access

Raquel Gomez and Lee Kalcsits

‘Honeycrisp’ is among the most widely grown apple cultivars in the United States and ‘WA 38’ is a new apple cultivar released in Washington State. ‘Honeycrisp’ is highly susceptible to bitter pit and other physiological disorders; however, ‘WA 38’ is not susceptible to bitter pit but little is known about its susceptibility to other disorders. Bitter pit is a calcium-related disorder that has been associated with localized calcium deficiencies in fruit in addition to the proportions of calcium relative to the presence of other nutrients like potassium and magnesium. The objective of this study was to compare physiological differences and fruit quality between ‘Honeycrisp’ and ‘WA 38’ to determine how these differences might correspond to differences in mineral nutrient composition and bitter pit susceptibility. Here, ‘Honeycrisp’ and ‘WA 38’ elemental composition in leaves, fruit, and xylem sap was measured every 20 days starting 30 days after full bloom and compared with leaf gas exchange and stem water potential. ‘Honeycrisp’ had greater foliar transpiration rates that corresponded with greater calcium in the leaves and lower leaf K+Mg/Ca ratio, when compared with ‘WA 38’. In contrast, fruit calcium concentrations were higher for ‘WA 38’ with lower K+Mg/Ca ratios. Xylem conductance was higher during late summer in ‘WA 38’ compared with ‘Honeycrisp’. ‘WA 38’ fruit was denser than ‘Honeycrisp’ and more research is needed to determine whether differences in fruit structure may affect susceptibility to bitter pit in apple.

Open access

Jin Wang, Yue Liu, Xueliang Chen and Qiusheng Kong

Watermelon (Citrullus lanatus) is an economically important cucurbit (Cucurbitaceae) crop cultivated globally for its nutritional benefits. Fruit development in watermelon is characterized by fast fruit expansion attributed to unique biological processes. Myeloblastosis (MYB) family genes play important roles in plant growth and development, especially R2R3-MYB-type genes. However, the evolution of R2R3-MYB family genes in the watermelon genome and whether they participate in the regulation of watermelon fruit development remain unknown. To address these questions, duplication modes of R2R3-MYB family genes were identified and their expression profiles were investigated during watermelon fruit development. A total of 48 duplicated gene pairs were identified among the 89 R2R3-MYBs in watermelon. Segmental and transposed duplication events play major roles in the R2R3-MYB family gene expansion process. The ratio of nonsynonymous mutation and synonymous mutation analysis indicated that all the duplicated R2R3-MYBs experienced negative selection. Gene structures and cis-element compositions in promoter sequences exhibited abundant divergences between the R2R3-MYB duplicated genes. Transcriptome analyses of seed, rind, and flesh during fruit development showed that only two duplicated gene pairs had significantly similar expression patterns, whereas divergent expression profiles were found between the remaining duplicated gene pairs. Tissue-specific and development stage-specific divergent expression patterns demonstrated that neo-functionalization occurred between watermelon R2R3-MYB duplicated genes. The current study provides valuable information for further functional analyses of R2R3-MYBs in watermelon.

Open access

Lloyd L. Nackley, Elias Fernandes de Sousa, Bruno J.L. Pitton, Jared Sisneroz and Lorence R. Oki

Potted poinsettia (Euphorbia pulcherrima) is an important commercial commodity for the U.S. floriculture industry. The production of poinsettia demands intensively managed light control, heat, fertilizer, and water; inhibiting elongation with plant growth regulators, and protecting plants from diseases and pests with pesticide applications. Excessive irrigation creates pollution, promotes disease, and is expensive. Sensor-based control systems can optimize irrigation schedules. Irrigation management is crucial in nursery production of poinsettias because water is a limited resource and agricultural runoff is monitored in many states across the United States. By pairing environmental sensors with sensors that continuously monitor plant transpiration, we can determine how plant water use and water stress fluctuate with environmental and physiological demands. We hypothesized that continual measurements of sap flow could be correlated with environmental sensors to develop a new water stress index (WSI), which can deliver the benefits of detecting water stress that might affect the quality of potted poinsettias. To test this hypothesis, rooted cuttings of poinsettia (E. pulcherrima cv. Prestige Red) were individually potted into twelve 11-L black plastic nursery pots. Potted plants were grown in a naturally illuminated temperature-controlled glasshouse. The 12 plants were randomly assigned one of three watering treatments: weekly, biweekly, and triweekly irrigation. From the data collected, we were able to create a WSI that correlated available soil moisture with the difference between the expected transpiration with actual transpiration rates. Our results suggest that the plants in the weekly treatment group did not experience water stress until 0.3 m3·m–3 volume water content indicated by <0.2 WSI. These results support previous research that found 0.1 to 0.3 m3·m–3 can be stressful soil moisture conditions for greenhouse-grown crops. Results also show that for substrates with similar substrates that irrigation set points can be reduced to 0.2 m3·m–3 for improved irrigation efficiency.

Open access

Nathan J. Herrick and Raymond A. Cloyd

Western flower thrips, Frankliniella occidentalis, and fungus gnats (Bradysia spp.) are major insect pests of greenhouse production systems. Both insect pests have life stages that reside in the soil or plant-growing medium: prepupae and pupae of western flower thrips and fungus gnat larvae. There are unsubstantiated allegations made by a manufacturer that certain plant-growing media that contain a bacterium, Bacillus pumilus, and arbuscular mycorrhizal fungus, Glomus intraradices, negatively affect the survival of western flower thrips pupae and fungus gnat larvae. Therefore, we conducted a study involving laboratory experiments replicated over time (2019 and 2020) to investigate the influence of the plant-growing media Pro-Mix BX + Mycorrhizae and Pro-Mix BX + Biofungicide + Mycorrhizae on western flower thrips pupae and fungus gnat larvae. All experiments involved placing western flower thrips pupae or fungus gnat larvae (second and third instar) into 473-mL deli containers with the different treatments (plant-growing media). A 5 × 4-cm section of a yellow sticky card was affixed to the lid of each deli container. After 21 days, the number of western flower thrips or fungus gnat adults that emerged from the growing media and were captured on the yellow sticky cards was recorded. The use of the yellow sticky card was an indirect assessment of western flower thrips pupal or fungus gnat larval mortality. We found none of the plant-growing media tested that contained a bacterium and/or arbuscular mycorrhizal fungus affected the survival of western flower thrips pupae or fungus gnat larvae. Therefore, greenhouse producers should be leery of information provided by manufacturers that does not contain valid, scientifically based data.

Open access

Ji Jhong Chen, Haifeng Xing, Asmita Paudel, Youping Sun, Genhua Niu and Matthew Chappell

More than half of residential water in Utah is used for landscape irrigation. Reclaimed water has been used to irrigate urban landscapes to conserve municipal water. High salt levels in reclaimed water may pose osmotic stress and ion toxicity to salt-sensitive plants. Viburnums are commonly used landscape plants, but salinity tolerance of species and cultivars is unclear. The objective of this study was to characterize gas exchanges and mineral nutrition responses of 12 viburnum taxa subjected to salinity stress in a greenhouse study. Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.3 dS·m–1 or saline solution at an EC of 5.0 dS·m–1 or 10.0 dS·m–1. The net photosynthesis rate (Pn), stomatal conductance (g S), and transpiration rate (E) of all viburnum taxa, except for Viburnum ×burkwoodii and V. בNCVX1’, decreased to various degrees with increasing salinity levels. The Pn, g S, and E of V. ×burkwoodii and V. בNCVX1’ were unaffected by saline solutions of 5.0 dS·m–1 at the 4th and 9th week after treatment initiation, with the exception of the Pn of V. ×burkwoodii, which decreased at the 9th week. Leaf sodium (Na+) and chloride (Cl) concentrations of all viburnum taxa increased as salinity levels increased. Viburnum ×burkwoodii had relatively low leaf Na+ and Cl when irrigated with saline solutions of 10.0 dS·m–1. Plant growth and gas exchange parameters, including visual score, plant height, Pn, g S, E, and water use efficiency (WUE) correlated negatively with leaf Na+ and Cl concentrations. The ratio of potassium (K+) to Na+ (K+/Na+) and ratio of calcium (Ca2+) to Na+ (Ca2+/Na+) decreased when salinity levels increased. Visual score, plant height, Pn, g S, E, and WUE correlated positively with the K+/Na+ and Ca2+/Na+ ratios. These results suggest excessive Na+ and Cl accumulation inhibited plant photosynthesis and growth, and affected K+ and Ca2+ uptake negatively.

Open access

Youping Sun, Ji Jhong Chen, Haifeng Xing, Asmita Paudel, Genhua Niu and Matthew Chappell

Viburnums are widely used in gardens and landscapes throughout the United States. Although salinity tolerance varies among plant species, research-based information is limited on the relative salt tolerance of viburnum species. The morphological and growth responses of 12 viburnum taxa to saline solution irrigation were evaluated under greenhouse conditions. Viburnum taxa included Viburnum ×burkwoodii, V. cassinoides ‘SMNVCDD’, V. dentatum ‘Christom’, V. dentatum var. deamii ‘SMVDLS’, V. dilatatum ‘Henneke’, V. בNCVX1’, V. nudum ‘Bulk’, V. opulus ‘Roseum’, V. plicatum var. tomentosum ‘Summer Snowflake’, V. pragense ‘Decker’, V. ×rhytidophylloides ‘Redell’, and V. trilobum. A nutrient solution at an electrical conductivity (EC) of 1.3 dS·m−1 (control) or saline solutions at ECs of 5.0 and 10.0 dS·m−1 were applied eight times over a 9-week period. Growth, visual quality, and morphological characteristics were quantified at the 4th week and 8th–9th week to assess the impact of salinity stress on the viburnum taxa. Saline solution irrigation imposed detrimental salinity stress on viburnum plant growth and visual quality, and the degree of salt damage was dependent on the salinity levels of irrigation solution and the length of exposure to salinity stress as well as viburnum taxa. Viburnum ×burkwoodii and V. בNCVX1’ had little foliar salt damage during the entire experiment, except those irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited slight to moderate foliar salt damage at the eighth week. Viburnum dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum irrigated with saline solution at an EC of 5.0 dS·m−1 had slight and severe foliar salt damage at the 4th and 8th week, respectively. Plants irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited severe foliar salt damage at the 4th week, and all died by the 8th week. Other viburnum taxa also showed various foliar salt damage, especially at an EC of 10.0 dS·m−1. The shoot dry weights of V. ×burkwoodii and V. בNCVX1’ irrigated with saline solution at ECs of 5.0 and 10.0 dS·m−1 were similar to those in the control at both harvest dates. However, the shoot dry weight of other tested viburnum taxa decreased to some extent at the 9th week. A cluster analysis concluded that V. ×burkwoodii and V. בNCVX1’ were considered the most salt-tolerant viburnum taxa, whereas V. dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum were sensitive to salinity levels used in this study. This research may guide the green industry to choose relatively tolerant viburnum taxa for landscape use and nursery production where low-quality water is used for irrigation.