Search Results

You are looking at 1 - 10 of 48 items for :

  • "gooseberry" x
  • All content x
Clear All
Free access

Stanisław Pluta, Edward Żurawicz, Marcin Studnicki, and Wiesław Mądry

In Poland, gooseberry is an important small fruit crop. Plants are grown on commercial plantations as well as in home gardens. In addition, this crop is a good supplement to the cultivation of blackcurrant ( Ribes nigrum ) and redcurrant ( Ribes

Free access

Carlo Fallovo, Valerio Cristofori, Emilio Mendoza de-Gyves, Carlos Mario Rivera, Roberto Rea, Simone Fanasca, Cristina Bignami, Youssef Sassine, and Youssef Rouphael

fruit leaf areas such as raspberry ( Rubus idaeus L.), redcurrant ( Ribes rubrum L.), blackberry ( Rubus fruticosus L.), gooseberry ( Ribes grossularia L.), and highbush blueberry ( Vaccinium corymbosum L.) is still lacking despite some studies on

Open access

Cristhian Camilo Chávez-Arias, Sandra Gómez-Caro, and Hermann Restrepo-Díaz

Cape gooseberry ( P. peruviana L.) is an herbaceous plant from the South American Andes that belongs to the Solanaceae family. P. peruviana is the second exported fruit species in Colombia with an export value of US$27.8 million during 2017

Open access

José Luis Chaves-Gómez, Alba Marina Cotes-Prado, Sandra Gómez-Caro, and Hermann Restrepo-Díaz

Cape gooseberry ( Physalis peruviana L.) is a fruit bush native to the highlands of the Andean region of South America ( Fischer et al., 2007 ). In Colombia, this crop is considered promising for export because of the high demand in European

Free access

Kim E. Hummer, Joseph D. Postman, John Carter, and Stuart C. Gordon

During Dec. 1997 and Jan. 1998, the gooseberry mite, Cecidophyopsis grossulariae Collinge, was observed to infest 48 currant and gooseberry (Ribes L.) cultivars in a field plantation in Corvallis, Ore. The mite was observed on 29 black currant, (Ribes nigrum L.), two red currant [Ribes rubrum L. and R. sativum (Rchbch.) Syme], 12 gooseberry [R. uvacrispa L., R. oxyacanthoides var. setosum (Lindley) Sinnot], and three R. ×nidigrolaria Bauer cultivars and the hybrid R. nigrum × R. pauciflorum Turcz. ex Pojark. A range of mite infestation levels was observed, with some cultivars not being infested, some with light infestation, having 1 to 100 adult mites per bud, and some heavily infested, with more than 100 mites per bud. On lightly infested buds, the mites were inside bud and leaf scales; in heavily infested buds, mites were also observed on floral primordia. Scales of infested buds were often loose and appeared more open than noninfested ones. Mite distribution varied by branch within a plant. Black currant cultivars with the heaviest infestation of C. grossulariae were of Scandinavian, Russian, Scottish, and Canadian origin. The Russian black currant cultivar Tunnaja was the most heavily infested with more than 1000 mites per bud. Floral primordia were damaged in heavily infested buds.

Full access

Deric D. Picton and Kim E. Hummer

Powdery mildew (Sphaerotheca mors-uvae) severely infects young leaves and stems of gooseberry (Ribes uva-crispa) throughout the world. Environmentally friendly control measures are being sought as alternatives to sulfur or demethylation inhibiting fungicides. This study examined the effect of a mineral oil spray, the biological control agent Trichoderma harzianum Rifai strain T-22 (Trichoderma), a combination mineral oil + Tricoderma, and the chemical fungicide thiophanate, on powdery mildew severity in `Industry,' a susceptible gooseberry. Mineral oil at 8 mL·L-1 (1.0 fl oz/gal), Tricoderma at 4 g·L-1 (0.5 oz/gal) and thiophanate at 1.45 mL·L-1 (0.186 fl oz/gal), and mineral oil + Tricoderma mix was applied to plants until runoff at 2-week intervals from February 2002 through April 2002, on potted `Industry' plants growing in a greenhouse in U. S. Department of Agriculture, Agricultural Research Service, National Clonal Germplasm Repository (NCGR), Corvallis, Ore. The percent of infected leaves per plant were calculated and the percent of infected stem surface areas were visually rated in mid-April. The fungicide, mineral oil, and mineral oil + Tricoderma treatment applications significantly reduced powdery mildew severity inboth leaves and stems as compared with those of the unsprayed plants. The stem powdery mildew reduction levels of the mineral oil or a combination of mineral oil + Trichoderma treatments, were not statistically different than that of thiophanate, which is reported as commercially acceptable. We recommend mineral oil spray, or mineral oil + Tricoderma, as alternatives to fungicide control of powdery mildew on leaves and stems of young gooseberry plants.

Free access

Tanjeet Singh Chahal*

A fertilizer trial was conducted to study the effect of Nitrogen (N), Phosphorus (P), and Potassium (K) on vegetative growth and fruit quality characters in cape gooseberry. The experiment consisting of three levels each of N, P, and K (at 5, 10, and 15 g/plant) along with their interactions was conducted in the experimental area, Dept. of Horticulture, Khalsa College, Amritsar, Punjab during the year 2001-2002. The increasing level of N, P, and K help to increase the plant height, where as application of N and K at 10 g/plant and P at 15 g/plant proved their worth for maximizing fruit size. The total soluble solids level of fruits increased significantly with the increment of N level, whereas in case of P and K the total soluble solids increased upto the moderate level and decreased with the further increment. On the other hand, the acidity per cent followed an increase with the each increasing level of all the fertilizers.

Free access

John Carter and Kim E. Hummer

Black currant (Ribes nigrum L.) cultivars with heavy, light, and no gooseberry mite (Cecidophyopsis grossulariae Collinge) infestation levels (MIL) were tested for cold hardiness by visually determining the bud injury rating (BIR) after laboratory freezing in Jan. 1998. Lightly mite-infested cvs. Blackdown and Risager, usually thought of as less cold hardy than Nordic cultivars, survived -35 °C, while mite-infested buds of the Finnish cv. Brödtorp were injured at -35 °C. Heavily mite-infested buds of the Swedish R. nigrum L. cv. StorKlas from Corvallis, Ore., were injured at -20 °C while lightly infested buds were injured to -25 °C. Noninfested `StorKlas' buds from Pennsylvania and British Columbia survived laboratory freezing to -35 °C. Heavy mite infestation lowered the bud cold hardiness of `Brödtorp' and `StorKlas' by 10 °C, as estimated by a modified Spearman-Karber T50, relative to the hardiness of lightly mite-infested buds of these cultivars. Heavily mite-infested buds contained unusual tissues forming what appeared to be spherical blisters or eruptions, ≈100 μ in diameter. Other tissues in the region of heavy mite infestation appeared to be more turgid than their noninfested counterparts. Abiotic and biotic stresses can have a combined impact on field-grown black currants.

Free access

Danny L. Barney

During the 1800s and early 1900s, red and white currants (Ribes L. subgenus Ribes), black currants (Ribes subgenus Coreosma), and gooseberries (Ribes subgenus Grossularia) were grown commercially in the United States. Because Ribes serve as alternative hosts of white pine blister rust (Cronartium ribicola J. C. Fischer) (WPBR), which was introduced from Europe, the federal government and many states either banned or severely restricted currant and gooseberry production beginning about 1933. The development of WPBR resistant pines and black currants (the most susceptible cultivated Ribes) renewed interest in commercial Ribes production. Climatic and soil conditions in selected areas of the U.S. inland northwest and intermountain west (INIW) are favorable for commercial currant and gooseberry production. Challenges to the establishment of a Ribes industry are labor, marketing, diseases, and pests. Careful site and cultivar selection are critical for successful commercial production. This article describes Ribes opportunities and risks associated with currant and gooseberry production in the INIW. The region includes Idaho and surrounding areas in Montana, Nevada, Oregon, Utah, Washington, and Wyoming.

Free access

Adam Dale

Fruit from black, red and white currants, and gooseberries (Ribes L.) were grown commercially in North America at the beginning of the 20th Century. However, when white pine blister rust (WPBR) (Cronartium ribicola J. C. Fisch.) was introduced into the new world, their cultivation was discontinued. About 825,000 t (908,000 tons) of Ribes fruit are produced worldwide, almost entirely in Europe. The fruit is high in vitamin C, and is used to produce juice, and many other products. Now a wide range of imported Ribes products is available particularly in Canada, and the pick-your-own (PYO) market is increasing. Two diseases, powdery mildew [Spaerotheca mors-uvae (Schwein.) Berk. & Curt.] and WPBR, are the major problems encountered by growers. Fortunately, many new cultivars are resistant to these two diseases. Commercial acreage of Ribes in North America is located where the growing day degrees above 5 °C (41 °F), and the annual chilling hours are at least 1200. Initially, the Ribes industry will develop as PYO and for farm markets. But for a large industry to develop, juice products will needed. Our costs of production figures indicate that about 850 Canadian dollars ($CDN) per 1.0 t (1.1 tons) of fruit will be required to break even.