Search Results

You are looking at 81 - 90 of 338 items for :

  • root-knot nematode x
  • All content x
Clear All
Free access

Yan Chen, Donald Merhaut, and J. Ole Becker

Nitrogen (N) fertilization is critical for successful production of cut flowers in a hydroponic system. In this study, two sunflower cultivars: single-stand `Mezzulah' and multi-stand `Golden Cheer' were grown under two N fertilization rates: 50 mg·L-1 and 100 mg·L-1 in a recirculating hydroponic system. At the same time, `Mezzulah' sunflowers were biologically stressed by exposing each plant to 2000 second-stage juveniles of the plant parasitic nematode Meloidogyne incognita, race 1. The experiment was conducted in May and repeated in Sept. 2004, and plant growth and flower quality between control and nematode-infested plants were compared at the two N rates. The two cultivars responded differently to fertilization treatments. With increasing N rate, the dry weight of `Mezzulah' increased, while that of `Golden Cheer' decreased. Flower size and harvest time were significantly different between the two cultivars. However, N had no effect on flower quality and harvest time. Flower quality rating suggests that quality cut stems can be obtained with 50 mg·L-1 N nutrient solution. Nematode egg count suggests that plants in the nematode treatment were successfully infested with Meloidogyne incognita, however, no significant root galling was observed, and plant growth and flower quality were not affected by nematode infestation.

Free access

Philip D. Dukes Sr., Richard L. Fery, and Judy A. Thies

Free access

S. Alan Walters, Todd C. Wehner, and Kenneth R. Barker

Free access

Brian A. Kahn, John P. Damicone, Kenneth E. Jackson, James E. Motes, and Mark E. Payton

Nine nematicide treatments were evaluated from 1993 through 1995 in field experiments on paprika pepper (Capsicum annuum L.). Materials tested included a chitinurea soil amendment and six chemicals: fosthiazate, carbofuran, aldicarb, oxamyl, fenamiphos, and 1,3-dichloropropene (1,3-D). Stands at harvest were increased relative to the control by chitin-urea, fosthiazate, and 1,3-D, but only fosthiazate increased marketable fruit yield relative to the control. Aldicarb reduced preharvest nematode populations relative to the control, but aldicarb did not result in a significant fruit yield increase. Chitin-urea was the only treatment to produce a net increase in nematode counts from preplant to preharvest in all three years. Although fosthiazate was promising, nematicide treatments were of limited benefit under the conditions of these studies. Chemical names used: (RS)-S-sec-butyl O-ethyl 2-oxo-1,3-thiazolidin-3-ylphosphonothioate (fosthiazate); 2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate (carbofuran); 2-methyl-2-(methylthio)propionaldehyde O-(methylcarbamoyl)oxime (aldicarb); methyl N′N′ -dimethyl-N-[(methylcarbamoyl)oxy]-1-thiooxamimidate (oxamyl); ethyl 3-methyl-4-(methylthio)phenyl(1-methylethyl) phosphoramidate (fenamiphos).

Free access

Richard L. Fery, Philip D. Dukes Sr., and Judy A. Thies

Free access

Anne M. Gillen and Fred A. Bliss

Tagging Genes for Nematode Resistance and Tree Growth in Peach.” Provision of the F 2 population HB × Oki by Craig Ledbetter, USDA-ARS, is gratefully acknowledged. Information regarding microsatellite pchgms1 and the L×N CAPs marker was provided by Albert