Search Results

You are looking at 81 - 90 of 666 items for :

  • All content x
Clear All
Free access

M. McLean, G.S. Howell, and A.J.M. Smucker

An experiment was conducted to evaluate interrelationships between differing crop loads and water stress on physiology and root dynamics of 3 year old Seyval grapevines grafted to 5-BB, Seyval and Seyval own-rooted stock grown under a rain exclusion shelter. Treatments were: 1) cropping level, either 0 (defruited) or 6 clusters/vine (heavily cropped) and 2) irrigation level, either 2.5 (stress) or 10 liters (control) of water/plant/week. Vines had significantly different root dynamics in regards to crop load, water status and rootstock. Water stressed vines had significantly fewer and smaller leaves (area cm 2 lighter trunk weights (g) and shorter shoot length compared to control vines. Heavily cropped vines had significantly fewer mature nodes, shorter shoot growth and higher bud mortality (winter injury) compared to defruited vines.

Free access

A.M. Akl, Faissal F. Ahmed, Farag M. El-Morsy, and Mohamed A. Ragab

The effect of single or combined application of urea-formaldehyde at 80 g N/vine, sulfur at 0.4%, and three compounds of iron (chelated, sequestered, and sulfate forms as 0.1%) on productivity of `Red Roomy' grapevines was studied during 1995 and 1996. A substantial increase in berry set, number of clusters, yield weight of clusters and berries, total soluble solid sugars, and anthocyanins was observed because of the application of these fertilizers singly or in combination. Total acidity in the juice was reduced because of application of these fertilizers. Combined application of urea-formaldehyde, sulfur, and chelated iron gave the best results with regard to yield and quality of berries. An economical yield was obtained on `Red Roomy' vines supplied with urea-formaldehyde at 80 g/vine, sulfur at 0.4%, and chelated iron at 0.1%.

Free access

M. Ahmed Ahmedullah

On potted Carignane grapevines, the following three leaf removal treatments were used: 1) six basal leaves allowed; 2) all leaves left on the vine; and 3) all leaves left on the vine except shoot tip, darkened by covering the leaves with aluminum-coated paper bags. Translocation and use of photosynthates was studied using C14 in the season of application and in the following year. In the season of C14 application, the roots and trunk were the major sinks. Reserve photosynthates were used to support current-season growth following budbreak in all three treatments. Treatments 1 and 2 showed similar trends in use of reserves; in treatment 3, however, reserves continued to be used until harvest at full maturity. Defoliated vines used more stored reserves than nondefoliated vines. Defoliated vines used more reserve carbohydrates, leaving little C14 reserves in old roots compared to nondefoliated vines.

Full access

S. Kaan Kurtural, Imed E. Dami, and Bradley H. Taylor

Response of yield components and fruit composition of `Chambourcin' (Vitis vinifera × V. rupestris) grapevines to three pruning levels of 15, 20, and 25 nodes retained for each pound of dormant prunings; and three cluster thinning levels of 1, 2, and 2+ clusters per shoot in 2002 and 1, 1.2, and 1.5 clusters per shoot in 2003 were measured at two vineyards in the lower midwestern United States. In both years of the study, there was very little interaction of pruning and cluster thinning. The proportion of non-count shoots increased within the canopy in response to increased pruning severity. Pruning weight means were lower in 2002 across all treatments compared to 2003. Pruning weights decreased with the increase in the number of clusters retained per vine. Pruning influenced yield only in 2003 when the proportion of count shoots decreased below 62% of the total, hence the relationship between number of shoots per vine and yield (R2 = 0.3452; P < 0.0003). In both years of the study, the increase in severity of cluster thinning resulted in yield reduction but an increase in the total soluble solids in juice. Yield compensation was achieved by an increase in cluster weight of 38%, and 25% in response to a reduction of 37%, and 23% in cluster numbers; which translated into a yield reduction of only 10% and 3%, at Vineyards 1 and 2, respectively. Balanced pruning to 15 to 20 nodes per 1 lb of prunings and cluster thinning to 1 to 1.2 clusters/shoot optimized yield (9.7 kg/vine, 13.4 t·ha-1) and fruit composition, and maintained vine size (≥0.3 kg·m-1 of row). These results provide valuable information for growers of `Chambourcin' grapevines in the lower midwestern U.S., as well as in other climates with long growing seasons.

Free access

Steven J. McArtney and David C. Ferree

Early season vegetative development of grapevines was studied in the year after imposing three cropping levels to mature `Seyval' vines in the field or establishing two light levels to potted `DeChaunac' vines growing in the greenhouse. Heavily cropped `Seyval' vines (averaging 90 buds, 15.8 kg fruit per vine over the previous two growing seasons) had 85% fewer count buds and 31% fewer non-count (latent) buds than lightly cropped vines (averaging 25 buds, 9.7 kg fruit per vine). The rate of leaf area expansion was reduced on heavily cropped vines. Covering `DeChaunac' vines in the greenhouse with 80% shade from bloom onwards reduced the leaf area per shoot in the year after treatment by reducing both the rate of leaf appearance and the rate of leaf expansion. The leaf at node four from the base of the shoot had the greatest area on both shaded and control vines; however, the area was reduced 33% on shaded vines. Data from the greenhouse experiment were used to model the effect of leaf size at the transition from sink to source on total source leaf area per shoot. Prior to bloom the total source leaf area per shoot was increased when individual leaves became sources earlier, i.e., at a lower percent of their final size. Whether a leaf became a source at either 30%, 50%, or 80% of its final size had little effect on total source leaf area per shoot after bloom. The proportion of source to sink leaf area at bloom was greater than 90% for both slow- and rapidly growing shoots (those on shaded and control vines, respectively). Expansion of grapevine leaves was reduced by heavy cropping and low light levels in the previous year, greatly reducing the source leaf area per shoot.

Free access

F.F. Ahmed, A.M. Akl, F.M. El-Morsy, and M.A. Ragab

Four biofertilizers (active dry yeast, phosphorene, rhizobacterium, and nitrobein) were used to fertilize `Red Roomy' grapevines. Growth and nutritional status of the vines as affected by such fertilizers during 1995 and 1996 were studied. Results showed that fertilizing the vine with all biofertilizers caused a material improvement in shoot length, leaf area, and cane thickness, and effectively enhance the nutritional status of the vines. The favorable effects of such fertilizers were in the following descending order: phosphorene, rhizobacterium, nitrobein, and active dry yeast. A great increase on growth and nutritional status of `Red Roomy' grapevines occurred as a result of supplying the vines with phosphorene or rhizobacterium as good, new biofertilizers.

Full access

Thomas J. Zabadal and Thomas W. Dittmer

Varying amounts of vegetation-free area (VFA) were established around newly planted `Niagara' (Vitis labrusca L. × Vitis vinifera L.) grapevines to determine their influence on vine growth during the first growing season. VFAs were either circular with radii from 0 to 5 ft (0 to 152 cm) in one experiment or in bands from 0 to 8 ft (0 to 244 cm) in width in a second experiment. VFAs were maintained with biweekly manual weeding for the entire growing season. Leaf, shoot and root dry weights as well as the number of primary shoots and the length of the longest root were measured at the end of their first growing season. The thresholds for maximum vine dry weight biomass accumulation occurred with a circular VFA of 4 ft (122 cm). When banded VFAs were used, total vine dry weight biomass continued to increase up to the widest treatment of 8 ft (244 cm). Therefore, no threshold was attained. These are greater VFAs than typically established around vines in commercial plantings. Therefore, growers who desire to maximize vine growth of newly planted vines, should consider larger VFAs around vines than has been traditional unless such a practice is likely to cause surface soil erosion.

Free access

Andrew G. Reynolds and Andrew P. Naylor

Glasshouse-grown `Pinot noir' and `Riesling' grapevines (Vitis vinifera L.) were subjected to one of four water stress durations [no water deficit (control); and water deficits imposed postbloom, lag phase, and veraison] in combination with three soil water-holding capacities (0%, 26%, and 52% gravel, by volume). Vines subjected to increasing water stress duration had less cumulative lateral shoot length and lower shoot count, leaf size, and berry weights than those not stressed. Soluble solids concentration (SSC) during maturation and pH at harvest also increased with increasing water stress duration, but titratable acidity was not affected. Transpiration and stomatal conductance also were reduced with increased water stress duration, but soil water increased, reflecting the larger leaf surface on vines with veraison-imposed deficits. Reducing water-holding capacity (by increasing the percentage of gravel in the soil) tended to increase berry weight and SSC but reduced lateral shoot growth. The 52% gravel treatments increased transpiration rate and stomatal conductance for `Riesling' but reduced them slightly in `Pinot noir'. Percentage of soil moisture was reduced linearly with reduced water-holding capacity. These results indicate that early irrigation deficits may advance fruit maturity of wine grapes with concomitant reductions in vegetative growth. Differential responses of these cultivars to soil water-holding capacity also should help to identify suitable wine grape cultivars as the wine grape industry expands into areas with low water-holding capacity soils.

Free access

Guadalupe Osorio and Daniel H. Díaz

Chilling accumulation infuence dormancy of grapevines and determines budbreak. Under desert conditions, hydrogen cyanamide (H2CN2) improve bud opening. To increase even further the quantity and uniformity of bud break, the effect of fall evap rative cooling (EC) alone or in combination with H2CN2(2.5%v/v was evaluated. Microsplinklers operated for 40 seconds at 10 min intervals from 10:00 h to 17:00 h, from 20 oct to 18 dec 1990. H2CN2 was applied on 21 dec, one day after pruning.

Cyanamide treated plants or with the chemical + EC, had 19% and 32% budbreak, respectively, by jan 15. Control or EC vines opened until feb 20, and reached 40% and 57% final values by mar 25. Therefore, cyanamide and EC acted sinergisti cally to open buds earlier and uniformily, although not on final budbreak.

Harvest started may 8 with cyanamide + EC, five days earlier than cyanamide alone; by may 13, accumulated harvest was 39% and 13% respectively, and of 92% and 77% by may 28. Control vines with or without EC, were harvested early may to mid june.

Free access

Larry E. Williams

Entire Thompson Seedless grapevines (to include the root system) were harvested at regular intervals over a two year period. Dry matter, soluble carbohydrates, N and K were quantified on an individual organ basis for each date. The pattern of dry matter partitioning to the roots and trunk were similar from one year to the next. Decreases in dry weight in the roots and trunk were accompained by decreases in soluble carbohydrates. The concentration of K in the roots remained almost constant over the two year period while that of N fluctuated from less than 1% (dry wt basis) to more than 2.5% depending on the time of the year. The dynamics of N and K within the trunk on a concentration or content (g vine-1) basis were similar to one another. N and K were remobilized from the trunk early in the growing while only N was remobilized from the root system. Remobilization of N from the roots took place from berry set until harvest.