Search Results

You are looking at 81 - 90 of 1,460 items for :

  • "production system" x
  • All content x
Clear All
Free access

Jeff Mitchell, Charlie Summers, and Jim Stapleton

Three systems for fresh-market tomato production (transplanting into reflective mulch, transplanting into a cover crop that had been chopped and killed, and standard transplanting into fallow beds) were evaluated in two field experiments in California's San Joaquin Valley in 1999. The first study was a spring tomato planting (April) and summer (July) harvest in which a mixture of rye, triticale, and vetch was used as the cover crop mulch. The second trial consisted of a summer tomato planting (July) and fall (September) harvst in which a sorghum/sudan hybrid was used as the mulch. In both experiments, tomato plants growing over the reflective mulches accumulated significantly more biomass than did plants growing in the other production systems. These larger, more-robust plants growing over reflective mulch also produced significantly higher yield. In the summer planting, there was almost no tomato biomass accumulation in the cover crop plots due to the fact that the sorghum-sudan hybrid we chose as the cover crop turned out to be allelopathic to tomatoes when shredded and used as a mulch.

Free access

K.M. Batal, M.R. Hall, D.M. Granberry, J.T. Garrett, D.R. Decoteau, R.T. Dufault, G.D. Hoyt, T.C. Gilsanz, J.M. Davis, and D.C. Sanders

A vegetable production system using winter cover crops and N rates was evaluated for several years in Georgia, South Carolina, and North Carolina. Snap bean, cucumber, tomato, potato, and sweetpotato crops were tested at different locations. Cover crop plots produced higher yields and better quality in all locations as seasons progressed over 4 years. Soil N levels in fallow, wheat, and clover plots were similar at initiation, but N gradually increased in clover plots in successive years. Yield and quality of root crops improved with Crimson clover without N applications compared to fallow plots with 60 kg N/ha. Effects on yield and tuber size are discussed. Nitrate and NH4-N in the soil profile from 15- to 150-cm depth were monitored at all locations. Nitrogen availability, depletion, and leaching below the root zone were determined. At low N rate, clover plots had slightly higher NO3 in the soil profile; however, at high N rate, N supply by clover was not as critical, and N leaching was detected at much lower depths than at low N rates.

Free access

Brent L. Black, Stan C. Hokanson, and Kim S. Lewers

In the perennial strawberry production system, removal of the harvested crop represents a loss of nitrogen (N) that may be influenced by cultivar. Eight strawberry (Fragaria ×ananassa Duch.) cultivars and eight numbered selections grown in advanced matted row culture were compared over three seasons for removal of N in the harvested crop. Replicated plots were established in 1999, 2000, and 2001 and fruited the following year. `Allstar', `Cavendish', `Earliglow', `Honeoye', `Jewel', `Northeaster', `Ovation', and `Latestar' and selections B37, B51, B244-89, B683, B753, B781, B793, and B817 were compared for yield and fruit N concentration. Harvest removal of N (HRN) was calculated from total season yield and fruit N concentration at peak harvest. There were significant differences in HRN among genotypes, ranging from 1.80 to 2.96 g N per meter of row for numbered selections B781 and B37, respectively. Among cultivars, HRN ranged from 2.01 to 3.56 g·m–1 for `Ovation' and `Jewel', respectively. The amount of HRN was largely determined by yield, however, there were also significant genotype differences in fruit N concentration, ranging from 0.608 to 0.938 mg N per gram fresh weight for B244-89 and `Jewel', respectively. These differences indicate that N losses in the harvested crop are genotype dependent.

Free access

Derek M. Law and Brent Rowell

A 2-yearfield study in Lexington, Ky., evaluated the use of mulches in two organic production systems for bell peppers. Two planting strategies, flat ground and plastic-covered raised beds, and five weed control practices, straw mulch, compost mulch, wood chip mulch, corn gluten, and “living mulch” clover were tested. In 2003, the mulches were applied at planting, while in 2004, shallow soil cultivation was used for 6 weeks prior to mulch application. In 2003, the experimental field had been under a winter wheat cover crop; in 2004, the field had been cover cropped for more than a year prior to planting with sudex/cowpea (Summer 2003) and rye/hairy vetch (Winter/Spring 2004). Bell pepper yields in both bed treatments were very low in 2003 due to extensive weed competition. In 2004, plastic-covered raised beds coupled with mulching in-between beds resulted in significantly higher yields than the peppers grown on flat ground. These yields were as high as yields from a conventional pepper trial conducted on the same farm. Compost mulch, continuous cultivation, and wood chip mulch provided excellent weed control in 2004. Straw mulch was variable in its weed control efficacy; corn gluten and “living mulch” clover were ineffective.

Free access

Bala Rathinasabapathi, James Ferguson, and Mark Gal

Shredded and chipped wood mulches are used for weed suppression in perennial fruit crops, in urban landscapes, and occasionally in vegetable crops. Wood chip mulches with weed-suppressing allelochemicals may be more effective for weed control, especially under sustainable and organic production systems, than mulches without such properties. The objective of this study was to test for the presence of water-soluble allelochemicals in wood chips derived from tree species, often found in wood resource recovery operations in the southeastern US. Presence of allelochemicals in water eluates of woodchips and leaves was evaluated in a lettuce bioassay. Eluates of wood chips from red maple (Acer rubrum L.), swamp chestnut oak (Quercus michauxii Nutt.), red cedar (Juniperus silicicola L.H. Bailey), neem (Azadirachta indica A. Juss.), and magnolia (Magnolia grandiflora L.) highly inhibited germinating lettuce seeds, as assessed by inhibition of hypocotyl and radicle growth. The effects of wood chip eluates from these five species were more than that found for eluates from wood chips of black walnut (Juglans nigra L.,) a species previously identified to have weed-suppressing allelochemicals. Tests on red cedar, red maple, and neem showed that water-soluble allelochemicals were present not only in the wood but also in the leaves. In greenhouse trials, red cedar wood chip mulch significantly inhibited the growth of florida beggarweed (Desmodium tortuosum DC.), compared to the gravel-mulched and no-mulch controls.

Free access

John M. Rariden and Douglas V. Shaw

Runner plants from 16 strawberry (Fragaria ×ananassa Duch.) cultivars were grown using annual Mediterranean production systems to test for differences in productivity, performance traits, and vegetative growth attributes. Genotypes were included from germplasm adapted to four geographic regions: California and northwestern, northeastern, and mid-Atlantic or southeastern United States. The California genotypes were divided further into day-neutral and June-bearing categories. With these treatments, California cultivars had significantly larger plants and grew more rapidly during the fall and winter, had larger fruit, and produced at least twice the quantity of fruit of cultivars from the other regions. Variance components due to region explained 64% and 26% of the phenotypic variance for early and total yield, respectively, whereas differences among cultivars within regions explained 12% and 7% of the variance for these traits. Cultivars from all regions had significantly larger plants and were more productive when treated with 3 weeks of artificial vernalization. However, region × vernalization effects were nonsignificant for all traits, a result suggesting that selection in Mediterranean environments has not adapted germplasm specifically for low vernalization conditions.

Free access

John M. Luna, Daniel Green-McGrath, Ray William, Stefan Seiter, and Tom Tenas

A participatory, on-farm research project was initiated in 1992 in an effort to enhance mutual learning, knowledge, and experience of integrating cover crops into western Oregon vegetable production systems. A major goal of the project was to include growers, agribusiness representatives, governmental agency, Extension and university researchers in a collaborative learning process, emphasizing grower participation in the design and implementation of on-farm research and demonstration projects. To facilitate this participation from the planning stage forward, four “focus sessions” were hosted by lead farmers in different areas of the Willamette Valley to define growers' needs and interests relating to on-farm research and demonstration trials.

Based on individual growers' specific experimental objectives, cover crop evaluation trials were established on ten farms. Typically on each farm, 5 to 10 cover crop species or mixtures (grain and legume) were planted in large plot strips. Twenty five different cover crop species, varieties, and mixtures were planted. Seasonal cover crop biomass and nitrogen accumulation rates were determined, with cover crop impacts on crop yields and economic returns evaluated at selected sites.

Free access

James B. Calkins and Bert T. Swanson

Media fertility, nutrient availability, and subsequently plant nutrition are critical factors that can be modified by growers to produce quality container-grown plants. The trend in container fertility has been toward incorporation of slow-release fertilizers; however, fertility release curves are variable and fertilizer longevity for many fertilizers is limited. Seventeen slow-release fertilizers were compared for longevity and plant performance over a 2-year production cycle using deciduous and evergreen plant materials. Plant growth was quantified based on height, volume, branching, dry weight, and quality. Soil fertility levels based on leachates were followed. Nutrient release for the incorporated fertilizers evaluated was variable. Fertility treatment effects were species-dependent. Several incorporated, slow-release fertilizers, especially those high in nitrogen and having extended release curves, including Nutricote 20–7–10, Scotts Experimental 24–6–10 and 26–6–11, Scotts Prokote Plus 20–3–10, Sierra 17–6–10, Sierra High N 24–4–6, Sierra Experimental 24–4–8, Woodace 21–4–10, Woodace 23–7–12, and Woodace Briquettes 23–2–0, show promise for use in 2-year container production systems.

Free access

Nancy G. Creamer, Mark A. Bennett, Benjamin R. Stinner, and John Cardina

Four tomato production systems were compared at Columbus and Fremont, Ohio: 1) a conventional system; 2) an integrated system [a fall-planted cover-crop mixture of hairy vetch (Vicia villosa Roth.), rye (Secale cereale L.), crimson clover (Trifolium incarnatum L.), and barley (Hordeum vulgare L.) killed before tomato planting and left as mulch, and reduced chemical inputs]; 3) an organic system (with cover-crop mixture and no synthetic chemical inputs); and (4) a no-input system (with cover-crop mixture and no additional management or inputs). Nitrogen in the cover-crop mixture above-ground biomass was 220 kg·ha-1 in Columbus and 360 kg·ha-1 in Fremont. Mulch systems (with cover-crop mixture on the bed surface) had higher soil moisture levels and reduced soil maximum temperatures relative to the conventional system. Overall, the cover-crop mulch suppressed weeds as well as herbicide plots, and no additional weed control was needed during the season. There were no differences in the frequency of scouted insect pests or diseases among the treatments. The number of tomato fruit and flower clusters for the conventional system was higher early in the season. In Fremont, the plants in the conventional system had accumulated more dry matter 5 weeks after transplanting. Yield of red fruit was similar for all systems at Columbus, but the conventional system yielded higher than the other three systems in Fremont. In Columbus, there were no differences in economic return above variable costs among systems. In Fremont, the conventional systems had the highest return above variable costs.

Free access

Gregory M. Peck, Ian A. Merwin, Christopher B. Watkins, Kathryn W. Chapman, and Olga I. Padilla-Zakour

replications of the two production systems (IFP and OFP). The IFP system followed published guidelines for New York ( Carroll and Robinson, 2006 ). It included carbaryl and plant growth regulators for fruit thinning; Bacillus thuringiensis , indoxacarb