Search Results

You are looking at 81 - 90 of 1,946 items for :

  • "photosynthesis" x
  • All content x
Clear All
Free access

Matthew Arrington, Mateus S. Pasa, and Todd C. Einhorn

rates of all ABA treatments were ≥90% of controls. Fig. 2. The effect of abscisic acid rate on photosynthesis ( P n ) of ‘Bartlett’ pear leaves in Expt. 3 ( A ) and Expt. 2 ( B ). Measurements were taken at solar noon (±1 h). Data are means of four

Full access

Yuting Meng, Boling Liu, Ping Zhang, Ping Cui, Yuguang Song, Nianwei Qiu, Guoliang Han, and Feng Zhou

. Photosynthesis is one of the most important and sensitive metabolic processes in plants. The BDE-47 treatments significantly affected not only the light reaction process but also the carbon assimilation ability of Chinese cabbage leaves. The chlorophyll

Free access

Stephanie Brown and Alejandro Ching

A photosynthesis study was conducted on seedlings of Lycopersicon esculentum L. cv. “Traveller 76” subjected to natural, clear, blue and red color irradiations to predict and evaluate harvest time and yield potential. Photosynthesis (PS) rates were higher on clear and red irradiated transplants with 16.1 and 12.4 μMol/m2/s, respectively, for two weeks of treatment. Blue irradiation showed lowest PS rate with 2.2 μMol/m2/s. For the third and fourth weeks of treatment, PS rate increased to 10.9 and 13.5 μMol/m2/s, respectively, on blue light treated transplants, while red, clear and natural light treatments decreased. CO2 appears to be lowest at high PS rate under these treatments. Transplants treated with blue and red lights were taller and thicker around the stem. Clear and natural lights were shorter, but with a larger root biomass. PAR (Photosynthetically Active Radiation) was highest at noon under open natural light with 1108.8 μE/s/m2, but also high for blue, red and clear lights when compared to earlier or later time. The lowest PAR was shown for blue and red lights.

Free access

Manuela Zude-Sasse, Ulrich Hartmond, Georg Ebert, and Peter Lüdders

Soil flooding reduces partial pressure of oxygen (pO2) in the root zone and often results in a reduction in photosynthesis and growth. In greenhouse studies, rooted stem cuttings of the mango (Mangifera indica L.) rootstock selection 13/1 were exposed to anoxia by saturating the root zone with N2 for up to 52 h. Reduced pO2 in the root zone affected the energy status of the roots and particularly enhanced the phosphorylated and nonphosphorylated pyridine nucleotide charges—the ratio of reduced Nicotinamide-adenine-dinucleotides [NAD(P)H] to total Nicotinamide-adenine-dinucleotide content [oxidized NAD(P)+ plus NAD(P)H]—that drive the redox reaction rates in cell metabolism. Also, the pyridine nucleotide charges in leaves were enhanced, while the photosynthetic rate decreased following reduction in pO2 in the root zone. During up to 4 h of reduced pO2, the ratio of internal CO2 concentration in the mesophyll to ambient CO2 concentration was unchanged. This implies a nonstomatal influence on photosynthesis. In addition, light saturation of photosystem II occurred at lower irradiance (470 μmol·m-2·s-1) resulting in reduced maximum photochemical efficiency below that of the high pO2 controls. After 28 h of reduced pO2, NAD(P) charges in the leaves returned to normal, diminishing its potential effect on net photosynthetic rate.

Full access

Tonghua Pan, Juanjuan Ding, Gege Qin, Yunlong Wang, Linjie Xi, Junwei Yang, Jianming Li, Jing Zhang, and Zhirong Zou

400 μmol·mol –1 , and this value is projected to double by the end of 21st century ( Urban et al., 2014 ). However, in a closed greenhouse, as plants absorb CO 2 for photosynthesis, CO 2 levels may fall to as low as 150 μmol·mol –1 in bright

Free access

David J. Ballantyne

The influence of photosynthetic photon flux density (PPFD) and gibberellic acid (GA3) sprays on shoot elongation was determined for `Coral Bells' (Kurume or R. obstusum hybrid), `Fashion' (Glen Dale or R. indicum × Kurume hybrid), `Hexe' (R. obtusum × R. simsii hybrid), `Hinocrimson' (Kurume or R. obtusum hybrid), `Hinodegiri' (Kurume or R. obtusum hybrid), and `Red Wing' (Brooks hybrid) azalea. GA3 at 1 mm was more effective in stimulating shoot elongation of `Coral Bells', `Fashion', `Hinodegiri', and `Red Wing' than of `Hexe' or `Hinocrimson'. GA3 sprays were more effective in stimulating elongation when applied to plants growing at irradiance levels of 350 μmol·s-1·m-2 than to plants growing at either 200 or 100 μmol·s-1·-2. Gross photosynthesis of leaf segments was higher for a slow-growing cultivar (Hinocrimson) than for a faster-growing cultivar (Fashion). `Hinocrimson' produced stouter shoots (greater dry weight/cm) than did `Fashion'.

Full access

Daniel Leskovar and Yahia A. Othman

measured 15 weeks after the N application in each year. Gas exchange measurements were conducted between 1100 and 1300 hr from two fully expanded leaves. Gas exchange measurements were determined using a portable photosynthesis system (LI-6400XT; LI

Free access

Jean-Pierre Privé, Lindsay Russell, and Anita LeBlanc

net photosynthesis (Pn) were achieved at a higher frequency of kaolin particle film application and that this was particularly the case at leaf temperatures exceeding 35 °C ( Privé et al., 2007 ). Ultraviolet damage and photoinhibition can be additive

Free access

Chuhe Chen, J. Scott Cameron, and Stephen F. Klauer


Free access

Lingyun Yuan, Yujie Yuan, Shan Liu, Jie Wang, Shidong Zhu, Guohu Chen, Jinfeng Hou, and Chenggang Wang

and accelerated senescence. The photosynthesis in C 3 plant is more sensitive to HT, especially the photosynthetic apparatus ( Wahid and Rasul, 2005 ). HT differently affects the stability of many proteins and membrane system and alters the efficiency