Search Results

You are looking at 81 - 90 of 288 items for :

  • "fertilization rate" x
  • All content x
Clear All
Free access

Sanliang Gu, Leslie H. Fuchigami, Lailiang Cheng, Sung H. Guak, and Charles C.H. Shin

Seedling plugs of `Early Girl' tomato plants (Lycopersicon esculentum Mill.) were potted in peatmoss and perlite (60:40% by volume) medium, fertilized with 8, 16, 24, or 32 g NutriCote Total controlled-release fertilizer (type 100, 13N–5.67P–10.79K plus micronutrients) per pot (2.81 l), and treated with 0%, 2.5%, 5%, or 7.5% antitranspirant GLK-8924 solution, at the four true-leaf stage. Plants were tipped at the second inflorescence and laterals were removed upon emergence. Leaf stomatal conductance, transpiration rate, and growth were depressed by GLK-8924. In contrast, higher fertilization rate increased plant growth but leaf stomatal conductance and transpiration rate were not affected until 3 weeks after GLK-8924 treatment. With 24 g NutriCote per pot, lamina N concentration in GLK-8924 treated plants was 12.5-fold of that in untreated plants, regardless of GLK-8924 concentration. Lamina P, K, Fe, and Cu were greater while S, Ca, Mg, Mn, B, and Zn were not affected by GLK-8924. The reduced growth by GLK-8924 may be due to the reduced stomatal conductance while the increased growth by high fertilization may be due to influences on plant nutritional status.

Free access

Catherine S.M. Ku and John C. Bouwkamp

Growth performance of potted `Peterstar Pink', `Top White', `Red Sails', and `Red Success' were evaluated in eight substrates and three fertilization rates. The substrates included Sunshine Mix 1 and Pro Gro 300S as control, and compost blends at 33%, 50%, and 67% of final substrate volumes mixed with peat and perlite (1:1). The blends included 2:1, 1:1, or 1:2 ratio of polymer dewatered biosolids (PDB):poultry litter (PL) and PDB: yard wastes (YW). Fertilization was applied twice weekly at 75, 100, and 150 mg/L N from 19N--2.2P-16.6K. Plants grown in Sunshine Mix 1 performed better than those grown in Pro Gro 300S. The growth parameters measured improved as the N rates increased for both controls. Plant diameter, grade, and dry weight of plants grown in 150 mg/L N treatment were usually similar to those in 100 mg/L N and were not 11% more than those at the lowest N treatment. The 1 PDB: 1 PL blend at the high N treatment produced premium-quality plants, and all remaining PDB:PL treatments produced good quality plants. The PDB:YW blends that received 100 and 150 mg/L N produced premium quality plants. The PDB:YW blends at the low N treatment produced slightly better quality plants than those grown in PDB:PL at the 75 mg/L N and were similar in quality as those grown in Sunshine Mix 1 at the 150 mg/L N treatment.

Free access

George J. Hochmuth, Jeffrey K. Brecht, and Mark J. Bassett

Nitrogen is required for successful carrot production on sandy soils of the southeastern United States, yet carrot growers often apply N in amounts exceeding university recommendations. Excessive fertilization is practiced to compensate for losses of N from leaching and because some growers believe that high rates of fertilization improve vegetable quality. Carrots (Daucus carota L.) were grown in three plantings during Winter 1994–95 in Gainesville, Fla., to test the effects of N fertilization on yield and quality. Yield increased with N fertilization but the effect of N rate depended on planting date; 150 kg·ha–1 N maximized yield for November and December plantings but 180 kg·ha–1 N was sufficient for the January planting. Concentration of total alcohol-soluble sugar was maximized at 45 mg·g–1 fresh root with 140 kg·ha–1 N for `Choctaw' carrots, whereas sugar concentration of `Scarlet Nantes' roots was not affected by N fertilization. Carrot root carotenoid concentration was maximized at 55 mg·kg–1 fresh root tissue with 160 kg·ha–1 N. Generally, those N fertilization rates that maximized carrot root yield also maximized carrot quality as determined by sugar and carotenoid concentrations.

Free access

Monica Ozores-Hampton, Eric Simonne, Eugene McAvoy, Phil Stansly, Sanjay Shukla, Pam Roberts, Fritz Roka, and Tom Obreza

About 10,000 ha of staked tomato are grown each year in the winter–spring season in southwest Florida. Tomatoes are produced with transplants, raised beds, polyethylene mulch, drip or seepage irrigation, and intensive fertilization. With the development of nutrient best management practices (BMPs) for vegetable crops and increased competition among water users, N recommendations must ensure economical yields, but still minimize the environmental impact of tomato production. The current University of Florida–IFAS (UF–IFAS) N fertilization rate of 224 kg·ha-1 (with supplemental fertilizer applications under specified conditions) may require adjustment based on soil type and irrigation system. Because growers should be involved in the development and implementation of BMPs, this project established partnerships with southwest Florida tomato growers. Studies evaluated the effects of N application rates on yield, plant growth, petiole N sap, pests, and diseases. Nine on-farm trials were conducted during the dry winter 2004–05 season. Treatments consisted of N fertilizer rates ranging from 224 to 448 kg·ha-1, with each trial including at least the UF–IFAS rate and the traditional rate. Although total yields were comparable among N rates, there were differences in size category. Nitrogen rates had little effect on tomato biomass 30 and 60 days after transplanting. Changes in petiole sap NO3-N and K concentrations were different between seepage and drip irrigation, but usually above the sufficiency threshold. It is important to consider the type of irrigation when managing tomato and determining optimum N fertilizer rates.

Free access

Doyle A. Smittle, W. Lamar Dickens, and James R. Stansell

An irrigation scheduling model for snap bean (Phaseolus vulgaris L.) was developed and validated. The irrigation scheduling model is represented by the equation: 12.7(i - 4) × 0.5ASW = Di-1 + [E(0.31 + 0.01i) - P - I]i, where crop age is i; effective root depth is 12.7(i - 4) with a maximum of 400 mm; usable water (cm3·cm-3 of soil) is 0.5 ASW, deficit on the previous day is Di-1; evapotranspiration is pan evaporation (E) times 0.31 + 0.01i; rainfall (mm) is P, and irrigation (mm) is I. The model was validated using a line source irrigation system with irrigation depths ranging from 3% to 145% of tbe model rate in 1985 and from 4% to 180% of the model rate in 1986. Nitrogen fertilization rates ranged from 50% to 150% of the recommended rate both years. Marketable pod yields increased as irrigation rate increased in 1985. Irrigation at 4%, 44%, 65%, 80%, 150%, and 180% of the model rate produced yields that were 4%, 39%, 71%, 85%, 92%, and 55% as great as yields with the model rate in 1986. Marketable pod yields increased as N rate increased when irrigation was applied at 80%, 100%, or 150% of the model rate in 1986, but pod yields varied less with N rate when irrigation was applied at 4%, 44%, 65%, or 180% of the model.

Free access

William R. Argo and John A. Biernbaum

Rooted cuttings of `Gutbier V-l 4 Glory poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) were grown in 15-cm pots using two irrigation methods, two water-soluble fertilization schedules, and two preplant root-media fertilization rates. No difference in shoot growth occurred with either top watering with 33% leaching or subirrigation. The top 2.5 cm (top layer) contained nutrient concentrations up to 10 times higher than those measured in the remaining root medium (root zone) of the same pot with both irrigation methods. Constant applications of28 mol N/m3 water-soluble fertilizer (WSF) limited shoot and root growth as measured at 3 and 8 weeks compared to a weekly increase in the concentration of WSF from 0 to 28 mol N/m3 in 7 mol N/m3 increments over a S-week period. The additional incorporation of 0.27 kg·m-3 mineral N to Metro Mix 510 before planting had no effect on fresh- or dry-weight accumulation. When the root-medium surface was covered by an evaporation barrier, 46% less water and 41% less N fertilizer were applied to plants of similar size, and higher root-zone nutrient levels were maintained over the 8 weeks of the experiment. The evaporation barrier had the greatest effect on increasing root-zone nutrient concentrations and reducing the growth of subirrigated plants.

Free access

Matthew W. Kent and David Wm. Reed

Greenhouse cultural methods must minimize runoff to keep pace with environmental regulation aimed at protecting water resources. Two experiments were designed to investigate the effect of N fertilization rate on New Guinea impatiens (Impatiens ×hawkeri) and peace lily (Spathiphyllum Schott) in an ebb-and-flow subirrigation system. Maximum growth response for impatiens was centered around 8 mm N levels as measured by root and shoot fresh and dry weight, height, leaf number, leaf area, and chlorophyll concentration. For peace lily, growth peaked at about 10 mm N. Growing medium was divided into three equal layers: top, middle, and bottom. Root distribution favored the middle and bottom layers, and the relative distribution of roots was consistent as N level increased. EC remained low in middle and bottom layers at N concentrations below 10 mm, but increased significantly for all layers at levels above 10 mm. The EC for the top layer was 2 to 5 times higher than in the middle or bottom layers at all N levels. Increased nitrate concentration paralleled increased EC, while pH decreased as N concentration increased for impatiens and peace lily.

Full access

Craig Kallsen

Previous research has shown that nitrogen fertilization rates may influence fruit quality characteristics of navel oranges [(Citrus sinensis) (L.) Osbeck]. The objective of this study was to determine, for equal seasonal N applications, if the timing of the last seasonal nitrogen fertigation promotes early fruit maturity or affects fruit size. The study consisted of four treatments with the total seasonal allocation of nitrogen fertilizer applied by ≈1 May, 1 June, 1 July, and 1 Aug. in an experimental site in a commercial orange grove in the southern San Joaquin Valley of California. The source of nitrogen was a liquid calcium ammonium nitrate injected through the irrigation system. No significant treatment differences in soluble solids concentration, titratable acidity, the ratio of soluble solids concentration to titratable acidity, percent juice, fruit color and fruit diameter were detected in fruit sampled in October. Similarly, in September, no significant differences in leaf nitrogen were found among treatments. These results do not support the hypothesis that applying the total seasonal application of nitrogen early in the season results in earlier orange maturity or larger fruit size, at least not for trees that have leaf N in the optimum range.

Free access

M.S. Albahou and J.L. Green

When using the closed, insulated pallet system (CIPS), it is desired to apply the fertilizers once at the beginning of planting and last through harvest. When doing so, the electrical conductivity (EC) of the root environment needs to be at a reasonable level. Therefore, the objective of this experiment was to determine the effect of fertilizer conserver placement and increasing rate on the EC of the growth media. When delivering nutrients in such a manner, the fertilizer ions have limited surface area in contact with the root growth media that limits ion diffusion rate. Five fertilization rates, 15, 45, 60, 75, and 105 g per 1.5-L media pouch, were tested in a completely randomized arrangement. In each pouch, two fertilizer conservers were placed in the center of the lower half of media, each containing a different source of fertilizer. Tomato cv. `Pik Red' was used to test the growth response to treatment. At day 100, the ECs of the middle 5 cm stratum of the growth media for the 15–75 g treatments were not significantly different from each other. Their ECs ranged from 2.52 to 4.51 dS/m. However, middle layer in the 105g treatment was 12.97 dS/m, while EC for the layer immediately below it was 1.18 dS/m. Because there were no differences in shoot and fruit weights among all fertilization treatments, compensation nutrient uptake and water uptake specialization may have occurred in the high salinity and lower salinity, respectively. The data illustrate that delivery of nutrients in small conservers is a feasible approach for the CIPS. Only small amounts of fertilizer are required for a 100-day tomato crop grown in CIPS.

Free access

Henry Taber, Penelope Perkins-Veazie, Shanshan Li, Wendy White, Steven Rodermel, and Yang Xu

The purpose of this experiment was to determine the response of tomato (Solanum lycopersicum L.) cultivars with fruit of average and high lycopene to increased K fertilization. The field experiment was designed as a factorial, split-plot, randomized complete block with four replications. The main plot consisted of K rates ranging from 0 to 372 kg·ha−1 K as KCl, and the subplot was cultivar (‘Mountain Spring’ or the high-lycopene Florida hybrid, ‘Fla. 8153’). The soil type was a well-drained, central Iowa loam with a soil test level considered low. The soil K application effect on total marketable fruit yield was linear (P < 0.001, Y = 53 Mg·ha−1 + 0.084x, r2 = 0.51) with both cultivars responding similarly. Fruit K analysis indicated a linear response to fertilization across four harvest dates, from 1236 to 1991 mg·kg−1, fresh weight basis. Harvest date had no effect on fruit lycopene concentration, but there was a significant (P = 0.006) interaction of K fertilization rate and cultivar. Overall, ‘Fla. 8153’ contained 9.5 mg·kg−1 more lycopene in fruit tissue than ‘Mountain Spring’. ‘Mountain Spring’ lycopene concentration was not enhanced by higher K fertilization (44.2 mg·kg−1). ‘Fla. 8153’ lycopene concentration increased 21.7% at the highest K rate compared with lower rates (62.9 vs. 51.7 mg·kg−1, respectively). A controlled greenhouse study in the fall of 2005 with the same cultivars indicated similar results. Fruit K concentration for ‘Fla. 8153’ was significantly (P < 0.01) correlated to the fruit carotenoids, phytoene and phytofluene, indicating a possible role for K in one of the enzymes that synthesize phytoene. In the field and greenhouse studies, increasing fruit K concentration in the high-lycopene ‘Fla. 8153’ depressed fruit β-carotene by 53%. These results indicate that K fertilization can affect carotenoid biosynthesis, and the response of tomato to a high K rate is genotype dependent.