Search Results

You are looking at 71 - 80 of 404 items for :

  • root rot pathogens x
  • All content x
Clear All
Free access

Michael K. Thornton and S. Krishna Mohan

Pathogen populations, disease development and onion yield were compared in solarized, fumigated and non-treated plots during 1992 and 1993. Soil solarization was accomplished by covering plots with clear plastic for six weeks beginning in mid-August, prior to the year of onion production. Solarization was also combined with metham sodium, a plied prior to covering with plastic. Soil temperatures reached a maximum of 48°C at the 10 cm depth in solarized plots, and were consistently 10 to 15°C higher than in non-solarized plots. Disease resistant (Bravo) and susceptible (Valdez) onion cultivars were planted the following spring. Only the solarization + metham sodium treatment significantly controlled pink root and plate rot in 1992. In 1993, all solarization and fumigation treatments controlled pink root. Solarization and fumigation did not significantly increase yield in comparison to the check, except for the solarization + metham sodium treatment in 1992. Bravo exhibited lower disease incidence than Valdez in both years of the study. Bravo produced 32.7 t/ha and 6.2 t/ha higher yield than Valdez in 1992 and 1993, respectively.

Full access

Christopher A. Clark, Washington L. da Silva, Ramón A. Arancibia, Jeff L. Main, Jonathan R. Schultheis, Zvezdana Pesic van-Esbroeck, Chen Jiang, and Joy Smith

progressing from either the proximal or the distal end of the root or both and a more restricted tip rot that appears in storage near the proximal end of the root ( Arancibia et al., 2013 ; Clark et al., 2013a ). Various fungi have been isolated from each

Full access

Emma C. Lookabaugh, Brian Whipker, and Barbara B. Shew

, but if overlooked in production systems, they could harbor pathogen propagules and serve as a source of inoculum for more susceptible plants or subsequent crops. Fig. 1. Differences in pythium root rot disease severity on two cultivars of poinsettia

Free access

Kevin Maloney, Marvin Pritts, Wayne Wilcox, and Mary Jo Kelly

Various soil amendments and cultural practices were examined in both a phytophthora-infested (Phytophthora fragariae var. rubi) (+PFR) and uninfested field (–PFR) planted to `Heritage' red raspberries. Although plants in the +PFR field did not exhibit typical disease symptoms due to unseasonably dry weather, their growth was less than those in the –PFR field. After 2 years, plants in the +PFR site had the highest yields in plots treated with phosphorous acid or amended with gypsum, whereas compost-amended plots had the lowest yields in both +PFR and –PFR sites. A second field study confirmed the positive effect of gypsum on growth and yield of raspberries in an infested site. In a third study, `Titan' raspberries grown under greenhouse conditions in pots containing unamended soil from the infested site, then flooded, exhibited severe disease symptoms; however, pasteurization of the soil, treatment with phosphorous acid and metalaxyl fungicide, or gypsum amendment mostly prevented symptoms from developing. These three studies suggest that a preplant soil amendment containing certain readily available forms of calcium, such as found in gypsum, can help suppress phytophthora root rot and increase survival, growth and yield of raspberries in sites where the pathogen is present.

Free access

J.R. Bohac, P.D. Dukes, A. Jones, J.M. Schalk, H.F. Harrison Jr., S.C. Charleston, and M. G. Hamilton

Carolina Bunch is a sweetpotato cultivar that combines high yield, excellent flavor and appearance with multiple pathogen and pest resistances. It is ideal for home or market gardens, because of its short vine and bunch habit that allow for production of high yields in a limited space. The roots are fusiform with uniform shape and a smooth, bright, light copper skin and dark orange flesh. When baked, the roots have a smooth texture and are sweet, moist and have excellent flavor and appearance. This sweetpotato can be grown virtually without pesticides. It has very high levels of resistances to southern root knot and other species of nematodes, Fusarium wilt, feathery mottle virus, sclerotial blight in plant beds, and Streptomyces soil rot. It has good resistance to many soil insects including several species of wireworm, Diabrotica, Systena, and flea beetles. In the southern US, it yields better than `Jewel' in a growing season of 110-120 days. Foundation roots are available in limited quantities from South Carolina Foundation Seed Association, Inc, 1162 Cherry Hill Rd, Clemson SC 29634-0393.

Free access

J.W. Scott and J.P. Jones

Lycopersicon pennellii accession LA 1277 was crossed to tomato (L. esculentum) and the F1 was backcrossed to tomato. Self-pollinated seed was saved from backcross plants and seedlings derived were inoculated with Fusarium oxysporum Schlecht f.sp. radicus-lycopersici Jarvis and Shoemaker, the causal agent of Fusarium crown and root rot (FCRR). Seed was saved from resistant plants that were self-pollinated and screened until homozygous resistance was verified five generations after the backcross. Three homozygous lines were crossed to Fla. 7547, a tomato breeding line susceptible to FCRR but resistant to Fusarium wilt races 1, 2, and 3. Subsequently, backcrosses were made to each parent and F2 seed were obtained. The three homozygous FCRR-resistant lines were also crossed to Ohio 89-1, which has a dominant gene for FCRR resistance presently being used in breeding programs. F2 seed were obtained from these crosses. These generations were inoculated with the FCRR pathogen. The resistant parents, F1, and backcross to the resistant parents were all healthy. The backcross to the susceptible parent and the F2 segregated healthy to susceptible plants in 1:1 and 3:1 ratios, respectively. Thus, the resistance from LA 1277 was inherited as a single dominant gene. This gene was different than the gene from Ohio 89-1 because susceptible segregants were detected in the F2 generation derived from the two resistant sources.

Free access

Michael D. Meyer and Mary K. Hausbeck

, 2004 ; Hwang and Kim, 1995 ). Phytophthora capsici causes fruit, crown, and root rot as well as foliar blight ( Babadoost, 2004 , 2005 ; Babadoost and Zitter, 2009 ; Hausbeck and Lamour, 2004 ). Phytophthora crown rot is particularly severe

Open access

Jacqueline Joshua and Margaret T. Mmbaga

et al., 2016 ), and were effective against Macrophomina root rot disease ( Mmbaga et al., 2018b ). The objectives of this study were 1) to identify soilborne pathogens from snap bean roots and rhizosphere soil where fungicides are not used in

Full access

A. James Downer, Janice Y. Uchida, Donald R. Hodel, and Monica L. Elliott

but has also been observed without the pathogen and in trees with mixed infections of canary island date palm wilt and pink rot disease [ Nalanthamnala vermoeseni (see below)] and or in palms with only pink rot (H. Ohr, personal communication

Free access

Charles S. Krasnow and Mary K. Hausbeck

Phytophthora capsici is a destructive pathogen of cucurbit and solanaceous vegetables. All cultivars of squash are considered susceptible to phytophthora root, crown, and fruit rot ( Babadoost and Islam, 2003 ; Cafe et al., 1995 ); losses in