Search Results

You are looking at 71 - 80 of 134 items for :

  • Malus ×sylvestris var. domestica x
  • All content x
Clear All
Free access

Sastry S. Jayanty, Mauricio Cañoles, and Randolph M. Beaudry

We studied the dose-response of `Redchief Delicious' apple [Malus sylvestris (L) Mill. var. domestica (Borkh.) Mansf.] fruit to repeated (weekly) dosages of 0.0, 0.02, 0.1, and 1.0 μL·L-1 1-methylcyclopropene (1-MCP) by measuring fruit firmness and chlorophyll fluorescence throughout an extended storage period at 0, 5, 10, 15, and 20 °C. The rate of firmness loss for nontreated fruit increased with increasing temperature. 1-MCP applied at concentrations of 0.1 and 1.0 μL·L-1 slowed firmness loss. The 1-MCP dose-response curve for the rate of firmness loss was essentially the same for all five temperatures. A concentration of 1.0 μL·L-1 1-MCP prevented firmness loss at all temperatures for the duration of the study; however, after holding fruit for an additional 7 days at room temperature, the fruit stored at 10 °C softened with increasing storage duration, whereas fruit at stored at higher and lower temperatures did not. The influence of 1-MCP on chlorophyll fluorescence (Fo and Fm) was markedly affected by temperature; Fo increased during storage at higher storage temperatures and this increase was enhanced by 1-MCP. Conversely, Fm decreased during storage and the rate of decline was much greater at the higher storage temperatures; the rate of decline was reduced by 1-MCP, but only at the higher storage temperatures. Photochemical efficiency (Fv/Fm) of nontreated fruit declined with time for all storage temperatures. Treatment with 0.1 and 1.0 μL·L-1 1-MCP only marginally reduced the rate of decline of photochemical efficiency. Sample loss due to decay increased with temperature, but was reduced by 1-MCP at all temperatures.

Free access

Robert K. Prange, John M. DeLong, Peter A. Harrison, Jerry C. Leyte, and Scott D. McLean

A new chlorophyll fluorescence (F) sensor system called FIRM (fluorescence interactive response monitor) was developed that measures F at low irradiance. This system can produce a theoretical estimate of Fo at zero irradiance for which we have coined a new fluorescence term, Fα. The ability of Fα to detect fruit and vegetable low-O2 stress was tested in short-term (4-day) studies on chlorophyll-containing fruit [apple (Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.), pear (Pyrus communis L.), banana (Musa ×paradisiaca L.), kiwifruit (Actinidia deliciosa C.S. Liang & A.R. Ferguson), mango (Mangifera indica L.), and avocado (Persea americana Mill.)] and vegetables (cabbage (Brassica oleracea L. Capitata Group), green pepper (Capsicum annuum L. Grossum Group), iceberg and romaine lettuce (Lactuca sativa L.)). In all of these fruit and vegetables, Fα was able to indicate the presence of low-O2 stress. As the O2 concentration dropped below threshold values of 0 to 1.4 kPa, depending on the product, the Fα value immediately and dramatically increased. At the end of the short-term study, O2 was increased above the threshold level, whereupon Fα returned to approximately prestressed values. A 9-month study was undertaken with `Summerland McIntosh' apple fruit to determine if storing the fruit at 0.9 kPa O2, the estimated low O2 threshold value determined from Fα, would benefit or damage fruit quality, compared with threshold + 0.3 kPa (1.2 kPa O2) and the lowest recommended CA (1.5 kPa O2). After 9 months, the threshold treatment (0.9 kPa) had the highest firmness, lowest concentration of fermentation volatiles (ethanol, acetaldehyde, ethyl acetate) and lowest total disorders. Sensory rating for off-flavor, flavor and preference indicated no discernible differences among the three treatments.

Free access

Amos Naor, Moshe Flaishman, Raphael Stern, Aharon Moshe, and Amnon Erez

The relative contribution of various temperatures to dormancy completion of lateral vegetative apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] buds was studied quantitatively on whole container-grown trees. Trees were exposed continuously to 10 different temperatures and also to daily alternating temperatures in a 24-hour cycle. In addition, fully chilled vertically and horizontally positioned shoots were compared under forcing conditions. No budbreak occurred in shoots chilled above 12.5 °C. There was a steep increase in budbreak as the chilling temperature fell from 12.5 to 7.5 °C. There was little difference in the level of budbreak on shoots chilled between 7.5 and 0 °C. The relative contribution of temperature to chilling accumulation in apple found in our study differs from what has been proposed for stone fruit and for apple in previous studies, especially at temperatures <6 °C. The length of exposure to forcing conditions required to initiate budbreak diminished as the chilling temperature was reduced. No additional bud-break was apparent on shoots chilled longer than 2100 chilling hours. The chilling requirement found here for lateral vegetative buds is much higher than that needed for terminal vegetative and flower buds. Trees that were exposed to daily alternating temperatures had lower levels of budbreak when the high temperature in the diurnal cycle was greater than 14 °C. Practically no budbreak was apparent on trees that were exposed to diurnal cycles with a high temperature of 20 °C for 8 hours. Budbreak on horizontally positioned trees was more than twice that on the vertically positioned trees, emphasizing the magnitude of the apical dominance effect and its strong masking of the chilling effect on lateral buds in vertically grown apple trees. Based on the data collected here we propose a new response curve for vegetative budbreak in `Golden Delicious·apple, within a temperature range between 0 to 15 °C.

Free access

Richard P. Marini, John A. Barden, John A. Cline, Ronald L. Perry, and Terence Robinson

The influence of rootstock on average fruit weight was evaluated for a subset of data from a multilocation NC-140 apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] rootstock trial. Data for eight dwarf rootstocks were collected at four locations for 2 years. Analysis of covariance was used to evaluate the effect of rootstock on average fruit weight when crop density or number of fruit per tree was included in the linear model as a covariate. When number of fruit harvested per tree was used as a covariate, average fruit weight was not affected by rootstock in either year in Ontario. In Michigan and Virginia, rootstock and number of fruit per tree, but not the rootstock × number of fruit interaction, were significant, so common slopes models were used to estimate least squares means for average fruit weight. In general, trees on M.27 and P.1 produced the smallest fruit, and trees on B.9, M.9 EMLA, and Mac.39 produced the largest fruit. In New York the interaction of rootstock × number of fruit was significant, so least squares means were estimated at three levels of number of fruit per tree. Both years, at all levels of number of fruit, trees on M.26 EMLA produced the smallest fruit and trees on M.27 EMLA produced the largest fruit. Average fruit weight was most affected by number of fruit per tree when Mark was the rootstock. In general, results were similar when crop density was used as the covariate, except that trees on M.27 EMLA did not produce small fruit in Michigan and Ontario.

Free access

Rui Zhou and Bruno Quebedeaux

Photosynthesis and carbohydrate metabolism in apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] source leaves were monitored during a 7-day period after source-sink manipulations by girdling or partial defoliation treatments. In the girdling treatment, sorbitol, sucrose, glucose, and starch accumulated in leaves, and net photosynthetic rates (Pn) at 350 μL·L-1 CO2 decreased during a 7-day period. Pn measured at 1000 μL·L-1 [CO2] was also decreased but the changes were less. Stomatal conductance and intracellular CO2 concentration decreased markedly in leaves of girdled shoots. When shoots were partially defoliated, starch and glucose concentrations in remaining source leaves declined steadily during the 7-day study period. Sorbitol and sucrose concentrations decreased during the first 2 days after defoliation, then increased the following 5 days. Pn of the remaining leaves measured at ambient and elevated CO2 levels were enhanced markedly. Aldose-6-phosphate reductase activity in source leaves increased markedly from 27.5 to 39.2 μmol·h-1·g-1 fresh weight (FW) after partial defoliation but remained unchanged in leaves after girdling. Selective and maximum sucrose phosphate synthase (SPS) activities increased following partial defoliation and decreased following girdling. ADP-glucose pyrophosphorylase activity remained relatively unchanged in the partial defoliation treatments but increased markedly in the girdled-shoot leaves. These results suggested that girdling-induced photosynthetic inhibition is mainly due to stomatal limitation, however, the photosynthesis enhancement by partial defoliation may be due primarily to acceleration of photosynthetic capacity per se. These studies showed that the metabolism of sorbitol, sucrose and starch, three photosynthetic end products in mature apple leaves, was coordinately regulated in source leaves in response to source-sink manipulations.

Free access

J. Pablo Fernández-Trujillo, Jacqueline F. Nock, and Christopher B. Watkins

`Cortland' and `Law Rome' apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] were either nontreated or treated with the inhibitor of superficial scald development, DPA, and exposed to air or CO2 (40 or 45 kPa) in air at 2 °C for up to 12 days. Fruit exposed to air or 45 kPa CO2 were sampled during treatment, and peel and flesh samples taken for fermentation product and organic acid analyses. After treatment, fruit were air stored for up to 6 months at 0.5 °C for evaluation of disorder incidence. `Cortland' apples were most susceptible to external CO2 injury and `Law Rome' to internal CO2 injury. DPA treatment markedly reduced incidence of both external and internal injury. Fermentation products increased in peel and flesh of both cultivars with increasing exposure to CO2, but the extent of the increase was cultivar dependant. Acetaldehyde concentrations were about 10 times higher in peel and flesh of `Law Rome' than that of `Cortland' apples. Ethanol concentrations in the flesh were similar in both cultivars, but were about twice as high in `Cortland' than in `Law Rome' peels. Neither acetaldehyde nor ethanol concentrations were affected consistently by DPA treatment. Succinate concentrations, often regarded as the compound responsible for CO2 injury, increased with CO2 treatment, but were not affected by DPA application. Citramalate concentrations were reduced by CO2 treatment in `Law Rome' peel, but other acids were not consistently affected by CO2. Results indicate that acetaldehyde, ethanol or succinic acid accumulation are not directly responsible for CO2 injury in apples. Chemical name used: diphenylamine (DPA).

Free access

Zohar Shaham, Amnon Lers, and Susan Lurie

`Granny Smith' apples [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] were harvested in two seasons and stored at 0 °C air storage with no pretreatment (control), after heating for 4 d at 38 °C, or after treating for 16 hours at 20 °C with 1 μL·L-1 1-methylcyclopropene (1-MCP). The effects of the two treatments on superficial scald development were consistent over both seasons. Scald began to appear after 8 weeks in control fruit, after 16 weeks in heated fruit but not on 1-MCP treated fruit. α-Farnesene accumulation and oxidation were slower in the skin of heated than in control fruit, and almost entirely absent in 1-MCP treated fruit. The activities of five antioxidant enzymes, ascorbate peroxidase, catalase, glutathione reductase, peroxidase and superoxide dismutate, were measured at two-week intervals in the apple peel, quantitatively as total activity and qualitatively by isozyme analysis. Enzyme activities either increased or remained stable during 16 weeks of storage, except for superoxide dismutase activity, which decreased. Ascorbate oxidase activity was higher in heated than control apples and there was an additional peroxidase isozyme present in activity gels. The activities of antioxidant enzymes were lower in 1-MCP treated fruit except for catalase during the first month of storage. Lipid soluble antioxidant activity was higher in 1-MCP treated fruit than the fruit of the other treatments, and water soluble antioxidant activity was higher in both treatments than in control fruit during the time that scald was developing in control apples. Both free and total phenol contents in the peel fluctuated during storage but no consistent trend was detected. The differences in enzyme activity and antioxidant content of the peel of 1-MCP and heated apples may play a role in preventing or delaying the appearance of superficial scald.

Free access

Zhiguo Ju and Eric A. Curry

Effects of α-farnesene biosynthesis precursors on α-farnesene and ethylene production were studied using Lovastatin-treated or nontreated `Delicious' and `Granny Smith' apples [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. In nontreated fruit, α-farnesene was detected only in fruit peel (≈3 mm) and not in the more proximal cortical tissue. α-Farnesene was not detectable in preclimacteric fruit peel at harvest. Mevalonic acid lactone (MAL) or farnesyl pyrophosphate (FPP) induced α-farnesene production when fed to preclimacteric peel tissue, but hydroxymethylglutaric acid (HMG) did not. Fruit stored at 0 °C for 30 days (climacteric fruit) produced α-farnesene, and addition of HMG, MAL, or FPP further increased α-farnesene production. When treated at harvest with Lovastatin at 1.25 mmol·L-1 and stored at 0 °C for 30 days, fruit produced ethylene but did not produce α-farnesene. Whereas MAL and FPP induced α-farnesene production in peel sections from these fruit, HMG did not. Induction of α-farnesene by precursor feeding was concentration-dependent and had no effect on ethylene production. Cortical tissue sections from climacteric fruit did not produce α-farnesene unless HMG, MAL, or FPP were fed during incubation. Including Lovastatin at 0.63 mmol·L-1 in the feeding solution eliminated HMG induced α-farnesene production, but did not affect MAL or FPP-induced α-farnesene production. Neither precursor feeding nor Lovastatin treatment affected ethylene production in cortical tissues. Chemical name used: [1S-[1a (R°), 3α, 7β, 8β (2S°, 4S°), 8αβ]]-1,2,3,7,8,8α-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1-naphthalnyl 2-methylbutanoate (Lovastatin).

Free access

Richard P. Marini

Data obtained over two years from chemical thinning experiments with `Redchief Delicious' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Manst.] on Malling 26 (M.26) rootstock were used to estimate mean fruit weight (MFW) and mean fruit value (MFV) using two sampling methods. The estimated values were compared with the true MFW and the true MFV calculated from the entire crop from a tree. Statistical techniques were used to assess agreement between the values obtained with estimation methods and the true values. Estimates of MFW obtained from a 20-fruit sample per tree may differ from the true value by ≈13% and estimates obtained from weighing all fruit on three limbs per tree may range from 11% to 19% of the true mean. Estimates of MFV obtained from packouts of a 20-fruit sample may differ from the true value by about $0.04 (U.S. dollars)/fruit and estimates from packing out all fruit on three limbs per tree may differ from the true mean by about $0.07/fruit. Analysis of variance was performed on each data set. The resulting P values differed for the three methods of calculating MFW and MFV. Therefore, erroneous conclusions may result from experiments where MFW and MFV are estimated from subsamples. Error associated with estimating fruit weight and fruit value from the sampling methods employed in this study may be larger than many pomologists can accept. Until protocols for sampling apple trees, which account for the important sources of within-tree variation, are developed, researchers should consider harvesting the entire crop to calculate MFW and MFV.

Free access

Jens N. Wünsche, John W. Palmer, and Dennis H. Greer

Effect of crop load on tree growth, leaf characteristics, photosynthesis, and fruit quality of 5-year-old `Braeburn' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] trees on Malling 26 (M.26) rootstock was examined during the 1994-95 growing season. Crop loads ranged from 0 to 57 kg/tree [0 to 1.6 kg fruit/cm2 trunk cross sectional area (TCA) or 0 to 8.7 fruit/cm2 TCA]. Fruit maturity as indicated by background color, starch/iodine score, and soluble solids was advanced significantly on low-cropping trees compared to high-cropping trees. Whole-canopy leaf area and percentage tree light interception increased linearly with a significant trend as crop load decreased. From midseason until fruit harvest, leaf photosynthesis decreased significantly on lighter cropping trees and similarly, a positive linear trend was found between whole-canopy gas exchange per unit area of leaf and crop load. Leaf starch concentration in midseason increased linearly as crop load decreased, providing some explanation for the increased down-regulation of photosynthesis on trees with lower crop loads. After fruit harvest, the previous crop loads had no effect on leaf photosynthesis and preharvest differences in whole-canopy gas exchange per unit area of leaf were less pronounced. At each measurement date, daily whole-canopy net carbon exchange and transpiration closely followed the diurnal pattern of incident photosynthetic photon flux. The photochemical yield and electron transport capacity depended on crop load. This was due mostly to reaction center closure before harvest and an increased nonphotochemical quenching after harvest.