Search Results

You are looking at 71 - 80 of 979 items for :

  • "weed controls" x
  • All content x
Clear All
Free access

David Staats, James Klett, Teri Howlett, and Matt Rogoyski

During the 2005 season, three preemergence herbicides were applied to four container-grown herbaceous perennials and evaluated for weed control, phytotoxicity, and effect on plant growth. The herbicides and application rates were: 1) Pendimethalin (Pendulum 2G) 2.24, 4.48, and 8.96 kg/ha; 2) Trifluralin and Isoxaben (Snapshot 2.5 TG) 2.8, 5.6, and 11.2 kg/ha; and 3) S-metolachlor (Pennant Magnum 7.6 EC) 2.8, 5.6, and 11.2 kg/ha. Herbicides were applied to Coral Bells (Heuchera sanguinea), Hopflower Oregano (Origanum libanoticum), CORONADO™ Hyssop (Agastache aurantiaca), and SPANISH PEAKS™ Foxglove (Digitalis thapsi). Treatments were applied twice with 30 days between applications. Plants were evaluated for phytotoxicity after 1, 2, and 4 weeks after applying herbicide treatments. No phytotoxicity symptoms were apparent on any of the plants treated with Pendulum, and plant size (dry mass) was not affected. Snapshot resulted in visual phytotoxicity with Digitalis and Heuchera at the higher rates and also resulted in smaller plants. Pennant Magnum caused phytotoxicity at all rates in all plants and resulted in significantly smaller plants than the control. Weed control was very good with all herbicides, but did not control every weed.

Free access

Charlotte Herman, David Larson, and Emily Hoover

29 POSTER SESSION 3 Weed Control/Cross-Commodity

Free access

James W. Shrefler, Charles L. Webber III, and Otis L. Faulkenberry III

Producers of organic vegetables often report that weeds are a troublesome production problem. It has been documented that corn gluten meal (CGM), a by-product of the wet-milling process of corn, is phytotoxic. As a preemergence or preplant-incorporated herbicide, CGM inhibits root development, decreases shoot length, and reduces plant survival of weed or crop seedlings. The development of a mechanized application method for CGM and the ability to apply the material in a banded pattern would increase its potential use in organic vegetable production, especially in direct-seeded vegetables. Therefore, the objective of this research was to develop a mechanized method to uniformly apply CGM to the soil surface in either a broadcast or banded pattern. An applicator was assembled using various machinery components (fertilizer box, rotating agitator blades, 12-volt motor, and fan shaped gravity-fed row banding applicators). The equipment was evaluated for the application of two CGM formulations (powdered and granulated), three application rates (250, 500, and 750 g·m–2), and two application configurations (solid and banded). Field evaluations were conducted during Summer 2004 on 81-cm-wide raised beds at Lane, Okla. Differences between CGM formulations affected the flow rate within and between application configurations. The granulated formulation flowed at a faster rate, without clumping, compared to the powdered formulation. While the CGM in the banded configuration flowed faster than the solid application. It was determined that the CGM powder used with the solid application configuration was inconsistent, unreliable, and thus not feasible for use with this equipment without further modifications. These evaluations demonstrated the feasibility of using equipment, rather than manual applications, to apply CGM to raised beds for organic weed control purposes. Several design alterations may increase the efficiency and potential usefulness of this equipment. If research determines equivalent weed control efficacy between the two CGM formulations, the granulated formulation would be the preferred formulation for use in this equipment. This equipment would be useful for evaluating the benefits of banded applications of CGM for weed control efficacy and crop safety for direct seeded vegetables.

Free access

James E. Klett and David Staats

Herbicides were applied to container grown landscape plants and evaluated on the basis of weed control, phytotoxicity, and effect on plant growth. Three preemergent herbicides were applied including: Oxadiazon (Ronstar) at 4.54 and 9.08 kg/ha, Oxyfluorfen + Oryzalin (Rout) at 3.41 and 6.81 kg/ha and Oryzalin (Surflan) at 2.27 and 4.54 kg/ha. There was also a weedy and non-weedy control. The plant species included: Syringa vulgaris (Common Lilac), Wisteria sinensis (Chinese Wisteria), Phlox paniculata (Garden Phlox) and Dahlia hybrid (Garden Dahlia). They were all grown in number one containers in a media of soil, spaghnum peat moss, and plaster sand (1:2:1 by volume). All herbicides tested controlled weeds effectively with no phytotoxicity except with Phlox paniculata. Oryzalin resulted in a phytotoxic effect on Phlox paniculata at both the 1x and 2x rates.

Free access

Angela K. Tedesco, Gail R. Nonnecke, Nick E. Christians, John J. Obrycki, and Mark L. Gleason

Field plots of four production systems of `Tristar' dayneutral and `Earliglow' June-bearing strawberry (Fragaria ×ananassa Duch.), established in 1993, included conventional practices (CONV), integrated crop management practices (ICM), organic practices using granulated corn gluten meal, a natural weed control product, (ORG-CGM), and organic practices using a natural turkey manure product (ORG-TM). `Earliglow' total yield from CONV plots in 1994 was similar to ICM and ORG-CGM, but greater than ORG-TM. Average berry weight and marketable yield were greater in the CONV system than both organic systems. CONV, ICM, and ORG-CGM plots had more runners and daughter plants than ORG-TM. Plots with CONV herbicide treatments were similar to ICM and ORG-CGM for percentage weed cover 1 month after renovation. `Tristar' crown number, crown and root dry weights, yield, and berry number were reduced when plants were grown under straw mulch in ORG-CGM and ORG-TM compared to CONV and ICM plots with polyethylene mulch.

Free access

J.R. Smart, D.J. Makus, and R.J. Coleman

Field studies were conducted to determine the efficiency and crop safety of trifluralin [2,6-dinitro-N, N-dipropyl-4(trifluoromethyl) benzenamine] in coriander (Coriandrum sativum L.), dill (Anethum graveolens L.), and dandelion greens (Taraxacum officinale Weber) when applied preplant-incorporated at 0.56 and 0.84 kg a.i./ha. Visual injury evaluations, crop fresh and dry weight at maturity, and leaf area were used to determine adverse effects of trifluralin on each crop when compared to an untreated control. Dandelion greens had a 47% and 49% reduction in leaf area when treated with trifluralin at 0.56 and 0.84 kg a.i./ha when compared to the untreated weed-free dandelion treatment. Coriander and dill showed no visual crop phytotoxicity and no adverse effects on crop growth, fresh and dry weight yield, or leaf area when treated with trifluralin. Trifluralin, when used in combination with early season mechanical cultivation, can provide selective weed control of many of the most common winter annual weeds in south Texas while exhibiting a high level of crop tolerance for coriander and dill.

Free access

Kassim Al-Khatib, Carl Libbey, and Sorkel Kadir

Broadleaf weed control with trifluralin, oxyfluorfen, pendimethalin, clopyralid, pyridate, and metolachlor in cabbage (Brassica oleracea L.) grown for seed was evaluated. No single herbicide controlled broadleaf weeds adequately, with the exception of pendimethalin at 1.92 and 3.84 kg a.i./ha. However, combinations of trifluralin + oxyfluorfen, pendimethalin + clopyralid, and oxyfluorfen + pyridate effectively controlled weeds and did not reduce seed yields. Herbicides caused slight to moderate injury symptoms to cabbage plants, with the greatest injury caused by pendimethalin and the least by trifluralin and metolachlor. However, plants recovered from these symptoms and appeared normal at the bud stage. None of the herbicides applied alone or in combinations adversely affected cabbage population, height, or flowering date. Chemical names used: 3,6-dichloro-2-pyridinecarboxylic acid (clopyralid); 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide (metolachlor); 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene (oxyfluorfen); N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin); O-(6-chloro-3-phenyl-4-pyridazin-yl)S-octylcarbonothioate (pyridate); 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzenamine (trifluralin).

Free access

James E. Klett, David Hillock, and David Staats

Herbicides were applied to container-grown herbaceous perennials and evaluated on the basis of weed control, phytotoxicity, and effect on plant growth. During the 1995 season six preemergent herbicides [(in kg·ha–1) Napropamide (Devrinol 10G), 4.5 and 9.1; Isoxaben (Gallery 75DF), 1.1 and 2.3; Oxadiazon (Ronstar 2G), 4.5 and 9.1; Oxyfluorfen + Oryzalin (Rout 3G), 3.4 and 13.6; Oryzalin (Surflan AS), 2.8 and 4.5; and Trifluralin (Treflan 5G) 4.5 and 9.1, were tested on Callirhoe involucrata, Delosperma nubigenum, Dendranthemum ×morifolium `Jennifer', Festuca cinerea `Sea Urchin', and Gypsophila paniculata `Fairy's Pink'. Isoxaben (both rates) resulted in visual phytotoxicity symptoms and sometimes death to Dendranthemum. Oxadiazon (9.1 kg·ha–1) and Oxyfluorfen + Oryzalin (both rates) resulted in plant chlorosis and necrosis to Delosperma soon after herbicide application, but plants outgrew herbicide damage. Napropamide (both rates), applied to Delosperma, resulted in less dry weight when compared to some of the other herbicide treatments. Oryzalin (4.5 kg·ha–1) resulted in visual phytotoxicity and less plant dry weight to Festuca. Data analysis revealed no significant differences in Callirhoe and Gypsophila. In general, most herbicides controlled weeds effectively.

Full access

Linglong Wei, Jarrod J. Morrice, Rodney V. Tocco, and Bernard H. Zandstra

several weed species and an increase in numbers of weeds that are naturally tolerant of these herbicides ( Gower et al., 2004 ; Peachey et al., 2011 ; Richardson and Zandstra, 2006 ). Regardless of resistance problems, chemical weed control is essential

Free access

Wheeler G. Foshee III, Robert W. Goodman, Michael G. Patterson, William D. Goff, and W. Alfred Dozier Jr.

Yields and economic returns above treatment variable costs were determined for young `Desirable' pecan [Carya illinoinensis (Wangenh.) C. Koch] trees grown for nine seasons under ten combinations of orchard floor management practice and irrigation. Orchard floor management practices were 1) no weed control, 2) mowed, 3) total weed control with herbicides, 4) grass control only with herbicides, or 5) disking, and trees were either irrigated or nonirrigated. Total weed control with herbicides increased cumulative yield through the ninth growing season by 358% compared to no weed control. In the humid environment where this experiment was conducted, irrigation did not increase crop value obtained from the young trees, except for 1 year. At the end of the ninth season, total weed control with herbicides was the only treatment to have a positive net present value. These data indicate that establishment costs for young `Desirable' pecan trees can be recovered as early as the eighth growing season if competition from weeds is totally eliminated.