Search Results

You are looking at 71 - 80 of 235 items for :

  • "nursery stock" x
  • All content x
Clear All
Free access

W.A. Retzlaff, L.E. Williams, and T.M. DeJong

Nursery stock of plum (Prunus salicina Lindel., `Casselman') was planted 1 Apr. 1988 in an experimental orchard at the Kearney Agricultural Center, Univ. of California, near Fresno. The trees were enclosed in open-top fumigation chambers on 1 May 1989 and exposed to three atmospheric ozone partial pressures (charcoal-filtered air, ambient air, and ambient air + ozone) from 8 May to 15 Nov. 1989 and from 9 Apr. to 9 Nov. 1990. Trees grown outside of chambers were used to assess chamber effects on tree performance. The mean 12-hour (0800-2000 hr Pacific Daylight Time) ozone partial pressures during the 2-year experimental period in the charcoal-filtered, ambient, ambient + ozone, and nonchamber treatments were 0.044, 0.059, 0.111, and 0.064 μPa·Pa-1 in 1989 and 0.038, 0.050, 0.090, and 0.050 pPa·Pa-1 in 1990, respectively. Leaf net CO2 assimilation rate of `Casselman' plum decreased with increasing atmospheric ozone partial pressure from the charcoal-filtered to ambient + ozone treatment. There was no difference in plum leaf net CO2 assimilation rate between the ambient chamber and nonchamber plots. Trees in the ambient + ozone treatment had greater leaf fall earlier in the growing season than those of the other treatments. Cross-sectional area growth of the trunk decreased with increasing atmospheric ozone partial pressures from the charcoal-filtered to ambient + ozone treatment. Yield of plum trees in 1990 was 8.8, 6.3, 5.5, and 5.5 kg/tree in the charcoal-filtered, ambient, ambient + ozone, and nonchamber treatments, respectively. Average fruit weight (grams/fruit) was not affected by atmospheric ozone partial pressure. Fruit count per tree decreased as atmospheric ozone partial pressure increased from the charcoal-filtered to ambient + ozone treatment. Decreases in leaf gas exchange and loss of leaf surface area were probable contributors to decreases in trunk cross-sectional area growth and yield of young `Casselman' plum trees during orchard establishment.

Free access

D.A. Devitt, R.L. Morris, and D.S. Neuman

A 2-year study was conducted to quantify the actual evapotranspiration (ETa) of three woody ornamental trees placed under three different leaching fractions (LFs). Argentine mesquite (Prosopis alba Grisebach), desert willow [Chilopsis linearis (Cav.) Sweet var. linearis], and southern live oak (Quercus virginiana Mill.) (nursery seedling selection) were planted as 3.8-, 18.9-, or 56.8-liter container nursery stock outdoors in 190-liter plastic lysimeters in which weekly hydrologic balances were maintained. Weekly storage changes were measured with a portable hoist-load cell apparatus. Irrigations were applied to maintain LFs of +0.25, 0.00, or -0.25 (theoretical) based on the equation irrigation (I) = ETa/(1 - LF). Tree height, trunk diameter, canopy volume, leaf area index, total leaf area (oak only) and dry weight were monitored during the experiment or measured at final harvest. Average yearly ETa was significantly influenced by planting size (oak and willow, P ≤ 0.001) and leaching fraction imposed (P ≤ 0.001). Multiple regressions accounting for the variability in average yearly ETa were comprised of different growth and water management variables depending on the species. LF, trunk diameter, and canopy volume accounted for 92% (P ≤ 0.001) of the variability in the average yearly ETa of oak. Monthly ETa data were also evaluated, with multiple regressions based on data from nonwater-deficit trees, such that LF could be ignored. In the case of desert willow, monthly potential ET and trunk diameter accounted for 88% (P ≤ 0.001) of the variability in the monthly ETa. Results suggest that irrigators could apply water to arid urban landscapes more efficiently if irrigations were scheduled based on such information.

Free access

Kim E. Hummer

The center of diversity for white pine blister rust (WPBR) (Cronartium ribicola J.C. Fischer) most likely stretches from central Siberia east of the Ural Mountains to Asia, possibly bounded by the Himalayas to the south. The alternate hosts for WPBR, Asian five-needled pines (Pinus L.) and Ribes L. native to that region have developed WPBR resistance. Because the dispersal of C. ribicola to Europe and North America occurred within the last several hundred years, the North American five-needled white pines, Pinus subsections, Strobus and Parya, had no previous selection pressure to develop resistance. Establishment of WPBR in North American resulted when plants were transported both ways across the Atlantic Ocean. In 1705, Lord Weymouth had white pine (P. strobis L.), also called weymouth pine in Europe, seed and seedlings brought to England. These trees were planted throughout eastern Europe. In the mid-1800s, WPBR outbreaks were reported in Ribes and then in white pines in eastern Europe. The pathogen may have been brought to Europe on an infected pine from Russia. In the late 1800s American nurserymen, unaware of the European rust incidence, imported many infected white pine seedlings from France and Germany for reforestation efforts. By 1914, rust-infected white pine nursery stock was imported into Connecticut, Indiana, Massachusetts, Minnesota, New Hampshire, Ohio, Pennsylvania, Vermont, and Wisconsin, and in the Canadian provinces of Ontario, Quebec, and British Columbia. The range of WPBR is established in eastern North America and the Pacific Northwest. New infection sites in Nevada, South Dakota, New Mexico and Colorado have been observed during the 1990s.

Free access

A.C. Arcinas, B.S. Sipes, A.H. Hara, and M.M.C. Tsang

Exporters of potted nursery stock face strict quarantine regulations against the burrowing nematode, Radopholus similis. Currently, there are no treatments approved by quarantine authorities to disinfest plants of R. similis. Interceptions of the nematode lead to significant economic loss and curtailment of trade, therefore hot-water drench treatments were investigated for quarantine utility. Drenches with 50 °C water were applied for 10 to 16 minutes to two economically important palm species, rhapis (Rhapis excelsa) and fishtail (Caryota mitis). Plants were inoculated with 5,000 mixed life stages of R. similis and allowed to establish for 14 weeks before drench treatments. In rhapis, a moderately good host to R. similis, a 16-minute hot water drench had high efficacy, achieving 99.6% mortality. In fishtail, a poor host, all treatments longer than 10 minutes at 50 °C eliminated R. similis from the plants. Probit regression estimates of the LT99, were 16.9 and 10.3 minutes respectively. However χ2 goodness-of-fit tests were significant (χ2 = 21.136, df = 3, p < 0.0001) for rhapis. Since most observed values were between the 95% fiducial limits, this suggests that the large χ2 value was caused by variability in response or insufficient repetitions rather than an inappropriate model. A χ2 statistic could not be computed for fishtail because poor host status led to variances that were nearly equal to zero. The high efficacy of hot water drenches for the control of R. similis is approaching the Probit 9 standard of 99.9968% mortality required for approval as a quarantine treatment.

Full access

L.T. Case, H.M. Mathers, and A.F. Senesac

Container production has increased rapidly in many parts of the U.S. over the past 15 years. Container production has been the fastest growing sector in the nursery industry and the growth is expected to continue. Weed growth in container-grown nursery stock is a particularly serious problem, because the nutrients, air, and water available are limited to the volume of the container. The extent of damage caused by weeds is often underestimated and effective control is essential. Various researchers have found that as little as one weed in a small (1 gal) pot affects the growth of a crop. However, even if weeds did not reduce growth, a container plant with weeds is a less marketable product than a weed-free product. Managing weeds in a container nursery involves eliminating weeds and preventing their spread in the nursery, and this usually requires chemical controls. However, chemical controls should never be the only management tools implemented. Maximizing cultural and mechanical controls through proper sanitation and hand weeding are two important means to prevent the spread and regeneration of troublesome weeds. Cultural controls include mulching, irrigation methods (subirrigation), and mix type. Nursery growers estimate that they spend $500 to $4000/acre of containers for manual removal of weeds, depending on weed species being removed. Economic losses due to weed infestations have been estimated at approximately $7000/acre. Reduction of this expense with improved weed control methodologies and understanding weed control would have a significant impact on the industry. Problems associated with herbicide use in container production include proper calibration, herbicide runoff concerns from plastic or gravel (especially when chemicals fall between containers) and the need for multiple applications. As with other crops, off-site movement of pesticides through herbicide leaching, runoff, spray drift, and non-uniformity of application are concerns facing nursery growers. This article reviews some current weed control methods, problems associated with these methods, and possible strategies that could be useful for container nursery growers.

Free access

Michael P. Harvey and Mark H. Brand

Studies conducted in 1998 and 1999 analyzed the influence of division size, nutrition, and potting medium pH on the growth rate of Hakonechloa macra `Aureola' in nursery-container production. For each study, divisions were made from container-grown nursery stock in late March, then established in 325-mL pots in a greenhouse prior to being transplanted to 3.7-L nursery containers in late May. Grass plants were grown outdoors, under 30% shade density cloth, with drip irrigation from June through September, and, excluding plants in the nutrition study, received top-dressed 17-6-10 slow-release fertilizer containing micronutrients. To determine the optimum division size for production, divisions of four sizes were made (based on one to two, four to six, eight to 10, or 12 to 15 buds per plant). There was a significant division size effect on bud count, leaf area, plant weight, width, and shoot count only when comparing the two lowest division sizes with the two highest. Treatment effects were insignificant among divisions containing one to two and four to six buds, or between eight to 10 and 12-15 buds. Both the larger two sizes produced marketable plants; therefore, divisions with eight to 10 buds are recommended for a schedule aimed at producing salable Hakonechloa over one growing season. The smallest division class is believed to be the more efficient size when one merely wishes to increase plant stock. In a separate study, a factorial trial testing ppm fertilizer (28, 56, 112, 224, and 448 ppm N) and N-P-K formulation (1-1-1, 2-1-2 and 4-1-4) did not generate significant differences between formulations. Plants were fertigated once a week, and EC levels were monitored bi-weekly from leachate collected in drainage saucers. Plant responses to N rates suggest that electrical conductivity levels be kept around 2.5 mS·cm-1 from a 112 ppm N fertilizer (EC can go as high as 4.0 mS·cm-1 with 224 ppm N). It was evident H. macra `Aureola' prefers acidic soil in production. When lime was not included in the potting mixture (a control treatment equating to a pH of about 4.5), leaf area, bud count, and shoot number doubled relative to the three lime treatments (2, 6, and 16 g lime/L of media, or 3.4, 10.1, and 26.9 lb/yard3).

Free access

Yao-Chien Chang, Karen Grace-Martin, and William B. Miller

' Association for Flowerbulbs and Nursery Stock.

Free access

Thomas C. Weiler

, over-wintering of container nursery stock, and weed and fertilizer management practices for woody plant production and landscape care. His outreach was extensive, including vanguard training of pesticide applicators in ornamental horticulture, and he

Full access

size varied considerably with cultivar. `Carlo' and `Minuette' were among the most productive cultivars, but pods of these cultivars were relatively large. INSTRUCTOR GUIDE FOR STUDYING THE AMERICAN STANDARD FOR NURSERY STOCK

Full access

Matthew A. Cutulle, Gregory R. Armel, James T. Brosnan, Dean A. Kopsell, William E. Klingeman, Phillip C. Flanagan, Gregory K. Breeden, Jose J. Vargas, Rebecca Koepke-Hill, and Mark A. Halcomb

Controlling weed contamination in nursery stock is difficult in ornamental production. Although cultural practices for weed control in nurseries include mulching and the use of fabrics to impede the development of emerging weeds, these techniques