Search Results

You are looking at 71 - 80 of 209 items for :

  • "low chilling" x
  • All content x
Clear All
Free access

Yang Fang, Jeffrey Williamson, Rebecca Darnell, Yuncong Li, and Guodong Liu

Southern highbush blueberry (SHB, Vaccinium corymbosum L. interspecific hybrid) is the major species planted in Florida because of the low-chilling requirement and early ripening. The growth pattern and nitrogen (N) demand of SHB may differ from those of northern highbush blueberry (NHB, V. corymbosum L.). Thus, the effect of plant growth stage on N uptake and allocation was studied with containerized 1-year-old SHB grown in pine-bark amended soil. Five ‘Emerald’ plants were each treated with 6 g 10% 15N labeled (NH4)2SO4 at each of 12 dates over 2 years. In the first year, plants were treated once in late winter, four times during the growing season, and once in the fall. In the second year, treatment dates were based on phenological stages. After a 14-day chase period following each 15N treatment, plants were destructively harvested for dry weight (DW) measurements, atom% of 15N, and N content of each of the plant tissues. Total DW increased continuously from mid-May 2015 to Oct. 2015 and from Mar. 2016 to late Sept. 2016. From August to October of both years, external N demand was the greatest and plants absorbed more N during the 2-week chase period, about 0.53 g/plant in year 1 and 0.67 g/plant in year 2, than in chase periods earlier in the season. During March and April, N uptake was as low as 0.03 g/plant/2 weeks in year 1 and 0.21 g/plant/2 weeks in year 2. Nitrogen allocation to each of the tissues varied throughout the season. About half of the N derived from the applied fertilizer was allocated to leaves at all labeling times except the early bloom stage in 2016. These results suggest that young SHB plants absorb greater amounts of N during summer and early fall than in spring.

Free access

Agustín Rumayor-Rodríguez

The annual yield variation in a Japanese plum (Prunus salicina Lindl.) germplasm collection [with 32 cultivars (cv)] was used to generate regression models to describe fruit yields in terms of climate. A Geographic Information System (GIS) combined with generated regression models was used for a regional analysis of potential areas for growing plums in Zacatecas, Mexico. Three distinct cv groups were obtained by principal component analysis and were included in the study: a) `Frontier'–`Santa Rosa', b) `Ozark Premier'–`Burbank', and c) `Shiro'. The amount of winter chilling and temperatures during bloom time were the climatic conditions most related to yield. `Frontier'–'Santa Rosa' had relatively low chilling requirements (700 chill units) compared to `Ozark Premier'–`Burbank', which required the most chilling (900 chill units). `Shiro' yields were more consistent than those of the other two groups, suggesting that it has less strict requirements and received sufficient chilling every year. High temperatures at bloom reduced fruit yield in all cultivars; however, the dependence of yield on temperatures during bloom in `Shiro' was modified by summer temperatures the previous year, suggesting that temperatures at the floral induction and formation stages affect flower primordia development. Using GIS, three potential areas for growing plums in the region were defined on maps, and the differences in potential yield between the cultivar groups were determined. `Frontier'–`Santa Rosa' may be good choices as plum cultivars for the region because they were the cultivars with the highest potential yield in the largest area; however, the flexibility of the method used allows the user to get a regional gradient of the expected yields with several plum cultivars. Using experimental information and a GIS can extend the applicability of germplasm collection data to regional planning in the establishment of orchards and new fruit industries.

Free access

K.G. Weis, S.M. Southwick, J.T. Yeager, W.W. Coates, and Michael E. Rupert

The years 1995 and 1996 were low chill years in California with respect to stone fruit dormancy. Advancing reproductive budbreak and flowering was accomplished in `Bing' cherry (Prunus avium) by single-spray treatments of a surfactant {a polymeric alkoxylated fatty amine [N,N-bis 2-(omega-hydroxypolyoxyethylene/polyoxypropylene) ethyl alkylamine]} and potassium nitrate in combination when applied at “tightbud,” ≈ 42 days (1 Feb. 1995) before full bloom and with surfactant and potassium nitrate in combination when 10% green calyx was apparent, 33 days before full bloom. Applying 2% surfactant (v/v) + 6% potassium nitrate (w/v) was most effective in advancing bloom, speeding progression through bloom, and advancing fruit maturity when applied at tightbud stage. Surfactant (2% or 4%) applied with 25% or 35% calcium nitrate (w/v) on 2 Feb. 1996 significantly advanced full bloom compared to nontreated controls. Fruit maturity (1995) was somewhat advanced by surfactant–nitrate treatments, but fruit set and final fruit weight were equivalent among treatments. No phytotoxicity was noted in foliage or fruit. In California, marginal and insufficient winter chilling often causes irregular, extended, or delayed bloom periods, resulting in poor bloom-overlap with pollenizers. As a result, flower and fruit development may be so variable as to have small, green and ripe fruit on the same tree, making harvest more time consuming and costly. Data indicate that this surfactant, in combination with a nitrogenous compound, has potential to advance reproductive budbreak and advance maturity in sweet cherry without reducing fruit set or fruit size. Advancing the ripening time of sweet cherry even 2 to 3 days can increase the price received per 8.2-kg box by $10 to $20.

Free access

Jeffrey G. Williamson, Gerard Krewer, Brian E. Maust, and E. Paul Miller

Experiments were conducted in north Florida and south Georgia to determine the effects of H2CN2 sprays on vegetative and reproductive growth of blueberry. In Florida, mature, field-grown `Misty' southern highbush (Vaccinium corymbosum L. hybrid) blueberry plants were sprayed to drip with 0, 10.2, or 20.4 g·L-1 of H2CN2 [hereafter referred to as 0%, 1.0%, and 2.0% (v/v) H2CN2] on 20 Dec. 1996 and 7 Jan. 1997. During the following winter, mature `Misty' southern highbush and `Climax' rabbiteye (V. ashei Reade) plants were sprayed to drip with 0, 7.6, or 15.3 g·L-1 of H2CN2 [hereafter referred to as 0%, 0.75%, and 1.5% (v/v) H2CN2] on 17 Dec. 1997 and 6 Jan. 1998. For all experiments, plants were dormant and leafless, with slightly swollen flower buds, at the time of spray applications. Generally, H2CN2 sprays increased the extent and earliness of vegetative budbreak and canopy establishment and advanced flowering slightly. The number of vegetative budbreaks usually increased linearly with increasing spray concentrations. In Florida, H2CN2 [0.75% to 1.0% (v/v)] sprays increased mean fruit fresh weight and yield, and shortened the fruit development period (FDP) compared to controls. However, H2CN2 sprays ranging in concentration from 1.5% to 2.0% (v/v) resulted in significant flower bud injury and reduced total fruit yield compared to controls. In south Georgia, 27 of 37 field trials conducted between 1991 and 1998 on several rabbiteye and southern highbush cultivars indicated that leaf development was significantly enhanced by H2CN2. H2CN2 shows potential for increasing early fruit maturity, fruit size, and yield of southern highbush and rabbiteye blueberry cultivars with poor leaf development characteristics in low-chill production regions. Chemical name used: hydrogen cyanamide (H2CN2).

Full access

Stephen M. Southwick, Kitren G. Weis, James T. Yeager, Michael E. Rupert, and Janine K. Hasey

In 1994, we established that a surfactant, Armothin (AR), reduced fruit set when applied as 3% and 5% AR at 100 gal/acre with a Stihl mistblower to `Loadel' clingstone peach [Prunus persica (L.) Batsch]. In 1995 we compared 3% AR at volumes of 100 and 200 gal/acre (935 and 1870 L.ha-1, the volumes most commonly used by tree fruit growers in California) applied with commercial airblast sprayer; overthinning resulted with the latter. In 1996, we applied 3% AR at 100 gal/acre and 1% AR at 200 gal/acre. In 1995, differential applications of 3% AR at 100 gal/acre (two-thirds of the material applied to either the upper or lower canopy) reduced fruit set in the upper canopy in proportion to the amount of chemical applied (twice as much fruit set reduction with twice as much chemical); fruit set in the lower canopy was reduced by an equal amount regardless of amount of chemical used. Salable yields, equivalent to those obtained by hand thinning, and improved fruit size were achieved with all treatments of 3% AR at 100 gal/acre in 1995 with a 76% reduction in hand thinning. Following a low-chill winter (1995-96) with a protracted bloom, flower bud density (return bloom) was significantly greater in 1995 AR-treated trees. In 1996, treatment with AR did not result in fruit set reduction due to the protracted bloom and poor weather conditions before and after bloom. Nonetheless, 1% AR at 200 gal/acre applied in 1996 increased salable yield and increased final fruit mass. Return bloom in 1997 was equal among 1996 treatments.

Free access

Craig E. Kallsen and Dan E. Parfitt

overlap the female receptivity of ‘Kerman’ in years with low chilling hour accumulation, such as 2014–15. Some growers have grafted ‘Randy’, an early flowering male, into ‘Kerman’ orchards, to help cover the pollination period of ‘Kerman’. However, during

Free access

Jessica Scalzo

There is an increased interest in late-ripening blueberry cultivars in New Zealand and other aspects the growers are looking for in a new cultivar are late flowering to overcome early spring frost, high yield, and adaptability to medium- to low-chill

Open access

Jose Martínez-Calvo and María L. Badenes

Iglesias, 2002 ). ‘Precocinho’ with 150 chill units (C.U.) contributed to the low chilling requirement ( Topp et al., 2008 ) and early ripening ( Romeu et al., 2015 ). Description ‘Presivac-1’ has low-to-medium chilling requirements (350–450 C.U.). Trees

Free access

Gerard W. Krewer, Thomas G. Beckman, Jose X. Chaparro, and Wayne B. Sherman

Statistical procedures for agricultural research Wiley New York, NY Richards, G.D. Porter, G.W. Rodriquez, J. Sherman, W.B. 1994 Incidence of blind nodes in low-chill peach and nectarine germplasm Fruit Var

Open access

Craig E. Kallsen and Dan E. Parfitt

full bloom flowering dates for male and female cultivars are shown for 5 years in Table 1 . ‘Tejon’ flowering dates were coincident with the early blooming female ‘Gumdrop’ ( Kallsen and Parfitt, 2017a ) in 2016–18. During the low chill years of 2014