Search Results

You are looking at 71 - 80 of 244 items for :

  • "direct-seeded" x
  • All content x
Clear All
Full access

John T.A. Proctor, Dean Louttit, and John M. Follett

Freshly harvested, immature (green) seeds of north american ginseng (Panax quinquefolius L.) were stratified for 12 months either traditionally in buried wooden boxes outdoors, or in plastic pails in a controlled environment room [3 ± 0.2 °C (37.4 ± 0.11 °F)], 85% ± 5% relative humidity) for about 9 months followed by about 3 months at 20 ± 2 °C (69.8 ± 1.1 °F). Embryo growth in Stage II (mid-May to late August when direct seeded) was more rapid [0.016 versus 0.009 mm·d-1 (0.00062 versus 0.00035 inches/day)] under controlled-temperature conditions. Seedling emergence rate did not vary between treatments. Root dry weight (economic yield) was similar for seedling, 2, 3, and 4-year-old plants whether grown from traditionally or controlled-temperature stratified seed. Controlled-temperature stratification of north american ginseng seed is an acceptable alternative to traditional outdoor, in-ground stratification.

Full access

Richard G Greenland

Planting barley (Hordeum vulgare L.) as a living mulch with onions (Allium cepa L.) reduces soil erosion and protects the onions from wind damage. It can also reduce yield and size of onion bulbs if not managed correctly. In a 4-year study at the Oakes Irrigation Research Site in North Dakota, barley was planted in the spring at the same time that onions were direct-seeded. Barley rows were planted either parallel with or perpendicular to the onion rows. Barley was killed with fluazifop-P herbicide when ≈13, 18, 23, or 30 cm tall. Onion size and yields were reduced when barley was allowed to grow taller than 18 cm before killing it. Total onion yield was usually greater when barley was planted parallel with, rather than perpendicular to, onion rows. Chemical name used: (R)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid (fluazifop-P).

Free access

Roland Roberts, David Bender, and Samuel Field

Extension-research teamwork supports Texas High Plains onion grower-shippers in transition from unprofitable labor intensive marketing and culture to profitable mechanical systems that are less stressful to workers. System comparisons include machine harvest vs. lifting and hand clipping; stationary seed grading and bagging vs. mobile field grading and bagging; transplant vs. fall seeding, spring seeding and dry set production. Old marketing systems cost growers $4.30/50-lb. sack, and the innovative system costs $2.59 to $3.00/sack. Old transplant systems average $450 to $500/acre and direct seeding costs $200/acre. Net increase in return to grower management from adoption of new systems range from $1,300 to $1,700. Extension and research conduct economic analysis, cultivar performance trials, seeding technique studies and on-farm demonstrations.

Free access

Charles S. Vavrina, Thomas A. Obreza, and John Cornell

`Tropical Quick' Chinese cabbage (Brassica rapa L., Pekinensis Group) was planted three times at 2-week intervals in Spring 1991 (direct-seeded) and two times in Fall 1991 (transplanted) in double rows on polyethylene-mulched beds to evaluate N source and rates. Calcium nitrate, ammonium nitrate, urea, urea-ammonium nitrate solution (Uran), and urea-calcium solution (Nitro-Pius) were applied preplant at 67,112, and 157 kg N/ha. The two later spring planting dates, compared with the earliest date, resulted in greater head fresh weights and higher insect damage incidence, but lower tipburn and flowering incidence. The earlier fall planting resulted in greater head fresh weight but a much higher flowering incidence than the later planting. Irrespective of planting date, head fresh weight increased quadratically, and tipburn and flowering incidence decreased linearly with increasing N rate. Although N source affected head fresh weight and tipbum incidence, differences were too small to be of practical value.

Free access

Michael N. Dana and Ricky D. Kemery

Interest in direct-seeding establishment of wildflowers as a component of landscape planting has continued to increase. Seed may be very expensive. Information is needed on the quality of seed available to consumers and the landscape industry. The goal of this work was to assess the level and consistency of seed quality available from the wildflower seed production/marketing industry. Eleven species of native prairie forb wildflowers and eight species of “garden” wildflowers from seven companies were purchased in 1992 and 1993 and subjected to germination testing. Germination procedures were those of AOSA where available, or generalized from the literature when no guidelines existed. Results showed significant variation among wildflower species, among companies supplying the same species, and over the two seed years tested in the study. These data reinforce the need for seed quality testing and reporting as a part of the sales of wildflower seed.

Free access

Richard G Greenland

Planting barley (Hordeum vulgare L.) as a living mulch with onions (Allium cepa L.) reduces soil erosion and protects the onions from wind damage. It can also reduce yield and size of onion bulbs if not managed correctly. In a 4-year study at the Oakes Irrigation Research Site in North Dakota, barley was planted in the spring at the same time that onions were direct-seeded. Barley rows were planted either parallel with or perpendicular to the onion rows. Barley was killed with fluazifop-P herbicide when ≈13, 18, 23, or 30 cm tall. Onion size and yields were reduced when barley was allowed to grow taller than 18 cm before killing it. Total onion yield was usually greater when barley was planted parallel with, rather than perpendicular to, onion rows. Chemical name used: (R)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid (fluazifop-P).

Full access

Ronald D. Morse

Advantages of no-till (NT) production systems are acknowledged throughout the world. During the 1990s, production of NT vegetable crops has increased for both direct seeded and transplanted crops. Increased interest in reduced-tillage systems among research workers and vegetable growers is attributed to: 1) development and commercialization of NT transplanters and seeders, 2) advancements in the technology and practice of producing and managing high-residue cover crop mulches, and 3) improvements and acceptance of integrated weed management techniques. Results from research experiments and grower's fields over the years has shown that success with NT transplanted crops is highly dependent on achieving key production objectives, including: 1) production of dense, uniformly distributed cover crops; 2) skillful management of cover crops before transplanting, leaving a heavy, uniformly distributed killed mulch cover over the soil surface; 3) establishment of transplants into cover crops with minimum disturbance of surface residues and surface soil; and 4) adoption of year-round weed control strategies.

Full access

Wayne C. Porter and Richard L. Parish

Cabbage (Brassica oleracea L. Capitata) was direct-seeded with a precision seeder or with a bulk seeder. Treatments with the bulk seeder consisted of blending viable, hybrid cabbage seed with nonviable, open-pollinated seed at several ratios to reduce the cost of planting hybrid seed. The study demonstrated that farmers with small acreages can obtain equivalent net income per acre using bulk seeders compared to using more expensive precision seeders. The study also showed that the additional cost per acre of a precision seeder is small compared to other input costs (for the acreage assumptions used here). Low percentages of hybrid seed in the bulk seeder (10% to 50%) were not economical. Precision seeding to a stand reduced the need for thinning labor and resulted in equivalent yields and net income.

Free access

Charles L. Webber III and James W. Shrefler

Although CGM has been identified as an organic herbicide for weed control in turf and established vegetable plants, direct contact with vegetable seeds can decrease crop seedling development and plant survival by inhibiting root and shoot development. The objective of this research was to determine the impact of banded corn gluten meal applications on squash plant survival and yields. This factorial field study was conducted during Summer 2005 on 81-cm-wide raised beds at Lane, Okla., with two application configurations (banded and solid), two CGM formulations (powdered and granulated), two incorporation treatments (incorporated and nonincorporated), and three application rates (250, 500, and 750 g·m–2). The two CGM formulations at three application rates were uniformly applied in both banded and solid patterns on 19 Aug. The banded application created a 7.6-cm wide CGM-free planting zone in the middle of the raised bed. The CGM applications were then either incorporated into the top 2.5 to 5.0 cm of the soil surface with a rolling cultivator or left undisturbed on the soil surface. `Lemondrop' summer squash (Cucurbita pepo L.) was then direct-seeded into the center of the raised beds. When averaged across the other factors, there was no significant difference between powdered and granulated CGM formulations or incorporating and nonincorporating the CGM for either squash plant survival or yields. As the CGM application rates increased the plant survival and yields decreased. Banded application resulted in significantly greater crop safety (90% plant survival) and yields (445 cartons/ha) than the broadcast (solid) applications (45% plant survival and 314 cartons/ha). The research demonstrated the potential usefulness of CGM in direct-seeded squash production, if used in banded application configuration.

Free access

James W. Shrefler, Charles L. Webber III, and Otis L. Faulkenberry III

Producers of organic vegetables often report that weeds are a troublesome production problem. It has been documented that corn gluten meal (CGM), a by-product of the wet-milling process of corn, is phytotoxic. As a preemergence or preplant-incorporated herbicide, CGM inhibits root development, decreases shoot length, and reduces plant survival of weed or crop seedlings. The development of a mechanized application method for CGM and the ability to apply the material in a banded pattern would increase its potential use in organic vegetable production, especially in direct-seeded vegetables. Therefore, the objective of this research was to develop a mechanized method to uniformly apply CGM to the soil surface in either a broadcast or banded pattern. An applicator was assembled using various machinery components (fertilizer box, rotating agitator blades, 12-volt motor, and fan shaped gravity-fed row banding applicators). The equipment was evaluated for the application of two CGM formulations (powdered and granulated), three application rates (250, 500, and 750 g·m–2), and two application configurations (solid and banded). Field evaluations were conducted during Summer 2004 on 81-cm-wide raised beds at Lane, Okla. Differences between CGM formulations affected the flow rate within and between application configurations. The granulated formulation flowed at a faster rate, without clumping, compared to the powdered formulation. While the CGM in the banded configuration flowed faster than the solid application. It was determined that the CGM powder used with the solid application configuration was inconsistent, unreliable, and thus not feasible for use with this equipment without further modifications. These evaluations demonstrated the feasibility of using equipment, rather than manual applications, to apply CGM to raised beds for organic weed control purposes. Several design alterations may increase the efficiency and potential usefulness of this equipment. If research determines equivalent weed control efficacy between the two CGM formulations, the granulated formulation would be the preferred formulation for use in this equipment. This equipment would be useful for evaluating the benefits of banded applications of CGM for weed control efficacy and crop safety for direct seeded vegetables.