Search Results

You are looking at 71 - 80 of 168 items for :

  • "controlled atmosphere storage" x
  • All content x
Clear All
Free access

Don C. Elfving, Stephen R. Drake, A. Nathan Reed, and Dwayne B. Visser

A sprayable formulation of 1-methylcyclopropene (1-MCP; AgroFresh, Spring House, PA) was applied to ‘Scarletspur Delicious’ and ‘Cameo’ apples in the orchard 1 to 3 weeks before harvest and compared in different postharvest studies with the commercial postharvest 1-MCP fruit treatment (SmartFresh; AgroFresh) and with aminoethoxyvinylglycine (AVG; ReTain; Valent BioSciences, Walnut Creek, CA). Treated apples were held in air storage for 50 to 60 d or in controlled-atmosphere storage for 120 to 125 or 215 to 225 d. With increased concentration, sprayable 1-MCP treatments were effective at controlling flesh firmness loss and internal ethylene concentration (IEC) up to 225 d of storage as well as during a 7-d poststorage shelf life simulation at room temperature. Application closer to harvest improved the effect of sprayable 1-MCP on control of flesh firmness loss and IEC. Concentrations of sprayable 1-MCP above 90 mg a.i./L produced similar fruit effects to 1-MCP. Treatment with 1-MCP showed little effect on soluble solids concentration (SSC), titratable acidity (TA), or skin or flesh color in ‘Delicious’ but slightly increased SSC and TA in ‘Cameo’ apples. AVG applied 4 weeks before commercial harvest controlled IEC nearly as well as either sprayable 1-MCP or 1-MCP during storage, but AVG-treated fruit allowed to ripen for 7 d at room temperature after storage lost much more flesh firmness regardless of storage regime. Sprayable 1-MCP also reduced starch hydrolysis, IEC and fruit drop at harvest. Sprayable 1-MCP may offer new opportunities for effective preharvest management of apple fruit condition, storability, and poststorage fruit quality.

Free access

S.R. Drake, T.A. Eisele, M.A. Drake, D.C. Elfving, S.L. Drake, and D.B. Visser

This study was conducted over three crop seasons using 'Delicious' (Scarletspur strain) apple trees on MM.111 rootstock. The bioregulators aminoethoxyvinylglycine (AVG) and ethephon (ETH) were applied alone or in combinations at various time intervals before harvest. Fruit response to bioregulators was evaluated at harvest and after storage. AVG applied 4 weeks before first harvest retarded starch loss at harvest, retained greater firmness, and reduced internal ethylene concentration and watercore of fruit at harvest and after both regular and controlled atmosphere storage. AVG did not influence peel color (hue values), but the flesh color of treated apples was more green. AVG in all instances tended to reduce the sensory scores for apples and apple juice. In contrast, ETH enhanced starch hydrolysis, flesh color development (green to more yellow), and soluble solids concentration while reducing titratable acidity levels. ETH had no influence on fruit firmness at harvest, but reduced firmness levels after storage in an inverse relationship to the concentration applied. Sensory values for whole apples were not influenced by ETH treatment, but ETH improved sensory preference for apple juice, particularly at early harvest. Applying AVG before ETH enhanced soluble solids and sensory scores for both fruit and juice. Treating with AVG followed by ETH at 150 mg·L–1 permitted the maintenance of satisfactory firmness values (>53.4 N) after long-term storage along with better quality and sensory perceptions. Using specific combinations of both AVG and ETH permitted ETH-mediated improvements in objective and perceived fruit quality to be obtained without the losses in flesh firmness and storability due to uncontrolled ethylene evolution and ripening typically observed when ETH is applied alone preharvest.

Free access

G. Hong and M.I. Cantwell

Minimal processing of green onions (Allium cepa × A. fistulosum) involves trimming and removing damaged leaves, cutting of roots, and removal of the compressed stem. If the stem tissue is completely removed with the roots, the white inner leaf bases may extend, or “telescope,” during storage. Storage at 0 °C greatly retards extension growth, but storage at 5 °C results in unacceptable extension rates. To maintain high quality and to extend the shelf life of intact and minimally processed green onions, the potential benefits of heat treatments and controlled atmosphere storage were evaluated. Atmospheres of 0.1% to 0.2% O2 or 0.1% to 0.2% O2 containing 7.5% to 9.0% CO2 at 5 °C were the CA conditions that best maintained visual appearance and prolonged shelf life to more than 2 weeks in both intact and cut onions. No CA treatment completely controlled “telescoping” at 5 °C. Several heat treatment combinations (52.5 and 55 °C water for 4 and 2 min, respectively) of the white inner leaf bases were effective in controlling “telescoping” of cut green onions stored at 5 °C. The effective heat treatments resulted in higher average respiration rates during 12 days, but did not affect the visual quality or shelf life of the cut green onions. Total soluble sugars decreased in intact or cut green onions, but concentrations were maintained in heat -treated onions. Thiosulfinate concentrations did not vary importantly during 14 days at 5 °C, except for a reduction in heat-treated onions not stored under CA.

Free access

James Mattheis and David Rudell

Metabolism of peel constituents was assessed during ripening of `Delicious' and `Golden Delicious' apples. The ethylene action inhibitor 1-methylcyclopropene (1-MCP) and/or controlled atmosphere storage (CA) were used to limit ethylene activity during and after storage at 1 °C. `Delicious' apples not exposed to 1-MCP developed a brownish discoloration (not superficial scald) during the initial 2 months of storage in air. LC/MS analyses of peel components indicated 1-MCP and/or CA inhibited the degradation of compounds responsible for red peel color (i.e., idaein) as well as other flavonoids. Ethylene regulation of metabolism of other phenolic and related constituents including (-)epicatechin and chlorogenic acid appears to be compound specific. The (-)epicatechin content is not impacted by 1-MCP or CA, while chlorogenic acid accumulation is reduced in fruit exposed to 1-MCP and/or stored in CA. β-carotene and lutein content in peel of `Delicious' fruit stored in air was lower compared with untreated controls. Chlorophyll degradation was enhanced in air-stored fruit previously exposed to 1-MCP; however, this result was not observed in 1-MCP exposed fruit from CA. Results for `Golden Delicious' apples also indicated that exposure to 1-MCP and CA, as well as storage duration, impacts metabolism of peel constituents. Chlorophyll degradation was delayed in fruit previously exposed to 1-MCP and then stored in CA. Impacts of 1-MCP and storage environment on concentrations of other `Golden Delicious' peel constituents increased with storage duration. The results indicate metabolism of apple fruit peel constituents during fruit ripening is differentially regulated by ethylene.

Free access

Krista C. Shellie

Green mold, a predominant disease of citrus fruit, develops when spores of Penicillium digitatum infect extant wounds in fruit epidermal tissue. Development of green mold during shipping limits the distance grapefruit can be surface transported. The objective of this research was to evaluate whether altering the atmosphere during refrigerated storage could suppress development of green mold. In the first two experiments, growth of green mold was evaluated after fruit were stored in ultra-low oxygen (0.05 or 1 kPa) at 14, 16, or 18 °C for up to 21 days. In the last two experiments, grapefruit were stored for 14 or 21 d at 12, 13, or 14 °C in atmospheres containing 2, 5, or 10 kPa oxygen with or without 2, 5, 10, or 20 kPa carbon dioxide. In all experiments, grapefruit were inoculated with 10 or 20 μL of a spore suspension of P. digitatum. Decay progression after storage was monitored by measuring the diameter of the lesion in cm at the demarcated site of inoculation or by subjectively rating percent decayed fruit surface area. Grapefruit not inoculated with P. digitatum had no visible symptoms of green mold. Grapefruit stored under controlled atmosphere had less fruit surface covered with mycelium (5% to 64%) than grapefruit stored in air. Inoculated grapefruit stored in 0.05 kPa oxygen for up to 14 d at 14 or 18 °C had no visible symptoms of green mold upon removal from cold storage, but developed a characteristic green mold lesion after 5 additional days of storage in air at ambient temperature. Results suggest that refrigerated controlled-atmosphere storage combined with wax and a fungicide can enhance control of green mold during shipping.

Free access

Elena de Castro, William V. Biasi, and Elizabeth J. Mitcham

’, and ‘Law Rome’ apples. Fig. 6. Firmness (Newtons) of apples at harvest and after 2 or 6 months of air or controlled atmosphere storage (1, 3, or 5 KPa CO 2 in combination with 1.5, 3, or 20 KPa O 2 ) at 0 ºC in 2002. Starch index at harvest

Free access

Jinwook Lee, James P. Mattheis, and David R. Rudell

-initiating softening ability of 1-methylcyclopropene-treated ‘Bartlett’ and ‘d’Anjou’ pears after regular air or controlled atmosphere storage J. Hort. Sci. Biotechnol. 81 959 964 Bai, J.H. Baldwin, E.A. Goodner, K.L. Mattheis, J.P. Brecht, J.K. 2005 Response of four

Free access

James P. Mattheis, David R. Rudell, and Ines Hanrahan

.R. Ehsani-Moghaddam, B. Bowen, A.J. Lesschaeve, I. 2015 Effects of 1-methylcyclopropene and controlled atmosphere storage on the quality of ‘Honeycrisp’ apples Acta Hort. 1071 483 488 DeEll, J.R. Lum, G.B. Ehsani-Moghaddam, B. 2016 Effects of delayed

Free access

Yukari Murakami, Yoshihiko Ozaki, and Hidemi Izumi

storage, and active MAP. High CO 2 controlled atmosphere storage. Twelve enzyme-peeled slices weighing 400 to 500 g were placed into a 2-L plastic container containing 5 mL of distilled water in a plastic beaker to maintain a high relative humidity. Three

Free access

Jennifer R. DeEll and Geoffrey B. Lum

.M. 2016 A novel type of dynamic controlled atmosphere storage based on the respiratory quotient (RQ-DCA) Postharvest Biol. Technol. 115 91 102 Blanpied, G.D. Silsby, K.J. 1992 Predicting harvest date windows for apples. Inform. Bul. 221. Cornell Coop. Ext