Search Results

You are looking at 61 - 70 of 1,723 items for :

  • foliar application x
  • All content x
Clear All
Free access

Shanshan Sun, Mengying An, Liebao Han, and Shuxia Yin

osmotic adjustment. In accordance with the results of Athar et al. (2008) , treatments with NaCl resulted in a marked increase in MDA and H 2 O 2 contents. However, foliar application of EBR effectively reduced MDA and H 2 O 2 content, and particularly

Free access

D.K. Harris, A.D. Owings, and S.E. Newman

Poinsettias and other floral crops when treated with the growth retardant uniconazole, Sumagic™, are more compact in growth habit. They have also been shown to have reduced stem strength. Calcium applied as a drench has been demonstrated to increase plant height and plant dry weight of poinsettias. Unicomazole reduced plant height without affecting dry weight. Bract color was more intense when calcium was applied as a weekly spray. Poinsettia plants had greater levels of foliar calcium when applied as a drench. Poinsettia plants sprayed and drenched with calcium and treated with uniconazole had greater levels of foliar calcium, however, this was not significantly greater than the control plants treated with uniconazole alone. The lowest level of foliar calcium was observed in uniconazole treated plants where calcium was applied as a spray. Uniconazole applications weakened the stein structure of poinsettias as with other floral crop species.

Free access

Robert M. Frymire and Janet C. Henderson

Uniform liners of pyracantha (Pyracantha coccinea Roem `Lalandei'), photinia (Photinia × fraseri Dress) and dwarf Burford holly (Ilex cornuta Lindl. and Paxt. `Burfordii Nana') were potted into 3.8 liter containers in a pine bark:sand medium. Ten weeks later, plants received uniconazole treatments as a media drench or foliar spray. The uniconazole drench rates were 0, 0.5, 1.0, and 3.0 mg ai per container for all three plant species. The foliar application rates were 0, 50, 100 and 150 ppm for pyracantha, 0, 25, 50 and 100 ppm for photinia, and 0, 10, 25, and 50 ppm for dwarf Burford belly. Plant heights and widths were recorded at 3 week intervals, and leaf chlorophyll content was determined by calorimeter at the same time as height and weight measurements. At harvest, leaf counts, leaf areas, and shoot, leaf and root dry weights were determined. Initial results indicate that both foliar and media drench treatments of uniconazole reduced growth of pyracantha and photinia at all rates. Only the two highest rates decreased growth of dwarf Burford holly when applied as either a media drench or a foliar spray.

Free access

Gene E. Lester, John L. Jifon, and Gordon Rogers

Muskmelon [Cucumis melo L. (Reticulatus Group)] fruit sugar content is directly related to potassium (K)-mediated phloem transport of sucrose into the fruit. However, during fruit growth and maturation, soil fertilization alone is often inadequate (due to poor root uptake and competitive uptake inhibition from calcium and magnesium) to satisfy the numerous K-dependent processes, such as photosynthesis, phloem transport, and fruit growth. Experiments were conducted during Spring 2003 and 2004 to determine if supplemental foliar K applications during the fruit growth and maturation period would alleviate this apparent inadequate K availability in orange-flesh muskmelon `Cruiser'. Plants were grown in a greenhouse and fertilized throughout the study with a soil-applied N-P-K fertilizer. Flowers were hand pollinated and only one fruit per plant was allowed to develop. Starting at 3 to 5 days after fruit set, and up to 3 to 5 days prior to fruit maturity (full slip), entire plants, including the fruit, were sprayed with a glycine amino acid-complexed potassium (potassium metalosate, 24% K) solution, diluted to 4.0 mL·L-1. Three sets of plants were sprayed either weekly (once per week), biweekly (once every 2 weeks) or not sprayed (control). Fruit from plants receiving supplemental foliar K matured on average 2 days earlier than those from control plants. In general, there were no differences in fruit maturity or quality aspects between the weekly and biweekly treatments except for fruit sugar and beta-carotene concentrations, which were significantly higher in the weekly compared to the biweekly or control treatments. Supplemental foliar K applications also resulted in significantly firmer fruit with higher K, soluble solids, total sugars, ascorbic acid (vitamin C) and beta-carotene concentrations than fruit from control plants. These results demonstrate that carefully timed foliar K nutrition can alleviate the developmentally induced K deficiency effects on fruit quality and marketability.

Free access

Allen D. Owings, Warren A. Meadows, Donald L. Fuller, and Melinda R. Stewart

Recent studies at Louisiana State University evaluated incorporated rates (0.72, 1.08, and 1.44 kg N/m3) of controlled-release fertilizers (Chrysanthemum Mix 12N-4.4P-14.1K, Osmocote 14N-6.1P-11.6K, and Nutricote Type 70 14N-6.1P-11.6K) on the foliar nutrient composition of `Spears' potted chrysanthemums. Recently mature leaf tissue was sampled at flowering and analyzed for N, P, K, Ca, Mg, Fe, Zn, Cu, and Mn.

Increasing application rates reduced Ca and M g content in leaf tissue, while N, P, and K increased with an increase in application rates. Chrysanthemum Mix 12N-4.4P-14.1K provided more K to leaf tissue than did Osmocote or Nutricote Type 70 14N-6.1P-11.6K.

Free access

Amir B. Izadyar, Mohammad J. Malakouti, Ali R. Talaie, and Esmaeil Fallahi

Different concentrations of urea and ammonium sulfate were sprayed to 15-year-old `Golden Delicious' and `Redspur Delicious' “on” selected apples trees, after 8, 9, and 10 weeks of full bloom. Leaf samples were taken 1 week before and after sprays for protein analysis with Near Infrared Reflectance (NIR). Percentage of flowering and fruit lenght-to-diamater ratio (L/D) were measured in both cultivars. Number of fruit only in `Redspur Delicious' during “on” and “off” years were recorded. Spray of nitrogen and sulfur chemicals increased the leaf protein contents up to a certain extent. Leaf protein content was not significantly affected by spray concentration, time of application, or cultivars. Foliar application of these chemicals at different periods reduced flower density, but did not have a significant effect on fruit L/D ratio. Foliar sprays increased the number of fruits in `Redspur Delicious' in the “on” year, but did not affect different treatments during the “off” year. The sprays after 8, 9, and 10 weeks of full bloom intensified alternate bearing in the following “off” year.

Free access

Gang Li and Michael R. Evans

Seedlings of Cucumis sativus (cucumber), Tagetes patula (marigold), Viola tricolor (pansy), Pelargonium × hortorum (geranium), and Impatiens wallerana (impatiens) were germinated on towels soaked with either deionized water, nutrient control solutions, or humic acid solutions. Root fresh weight and root dry weights were higher for all seedlings germinated on towels soaked with humic acid as compared to seedlings germinated on towels soaked with deionized water or nutrient control solutions. Lateral root number and total lateral root length were higher for cucumber, marigold, pansy, and geranium seedlings germinated on towels soaked with humic acid than those germinated on towels soaked with deionized water or nutrient control solutions. Root fresh and dry weights were higher for impatiens, Begonia semperflorens (begonia), marigold, and geranium seedlings germinated in a sphagnum peat: vermiculite (80:20, %v/v) substrate drenched with humic acid as compared to seedlings germinated in substrate drenched with deionized water or nutrient control solutions. Foliar sprays of humic acid also resulted in increased root fresh and dry weights while foliar application of nutrient control solutions either had no effect or reduced root fresh and dry weights.

Free access

Pinghai Ding*, Minggang Cui, and Leslie H. Fuchigami

Reserve nitrogen is an important factor for plant growth and fruiting performance in tree fruit crops. The fall foliar urea application appears to be an efficient method for increasing N reserves. The effect of fall foliar urea application on N reserves and fruiting performance were studied with four year old `Gala'/M26 trees grown in 20 gallon containers in a pot-in-pot system from 2001 to 2003 at the Lewis-Brown Horticulture Farm of Oregon State Univ.. The trees were either sprayed with 0 or 2 times 3% urea after harvest in October. Shoot and spur samples were taken at the dormant season for reserve N analysis. Fruit performance was recorded in the following growing season. The fall foliar application significantly increased spur N reserve and had the trend to increase shoot N reserve but not significantly. The fall foliar application significantly increased tree fruit set and cluster fruit set. With normal fruit thinning, fall foliar urea application has the trend to increase both tree yield and average fruit size; without fruit thinning, fall foliar urea application has the trend to increase tree yield. These results indicate that fall foliar urea application an effective method to increase reserve N for maintaining tree yield.

Free access

Guohai Xia and Lailiang Cheng

One-year-old `Concord' grapevines (Vitis labruscana Bailey) were fertigated with 0, 5, 10, 15, or 20 mm N in a modified Hoagland's solution for 8 weeks during summer. Half of the vines fertigated at each N concentration were sprayed with 3% foliar urea twice in late September while the rest served as controls. Four vines from each treatment combination were destructively sampled during dormancy to determine the levels and forms of N and carbohydrates. Nitrogen fertigation during the summer did not significantly alter vine N concentration whereas foliar urea application in the fall significantly increased vine N concentration. In response to foliar urea application, concentrations of both free amino acid-N and protein-N increased, but the ratio of protein-N to free amino acid-N decreased. Arginine was the most abundant amino acid in free amino acids and proteins, and its concentration was linearly correlated with vine N concentration. Concentrations of total nonstructural carbohydrates (TNC) decreased slightly in response to N supply from fertigation. Foliar urea application in the fall significantly decreased TNC concentration at each N fertigation level. Starch, glucose, and fructose decreased in response to foliar urea applications, but sucrose concentration remained unaffected. Approximately 60% of the carbon decrease in TNC caused by foliar urea application was recovered in proteins and free amino acids. We conclude that free amino acids account for a larger proportion of the N in vines sprayed with foliar urea compared with the unsprayed vines, but proteins remain as the main form of N storage. In response to foliar urea application, part of the carbon from TNC is incorporated into proteins and free amino acids, leading to a decrease in the carbon stored in TNC and an increase in the carbon stored in proteins and free amino acids.

Free access

Guohai Xia* and Lailiang Cheng

One-year-old `Concord' vines were fertigated with 0, 5, 10, 15, or 20 mm N in a modified Hoagland's solution for 8 weeks during summer. Half of the vines fertigated at each N concentration were sprayed with 3% foliar urea twice in late September while the rest served as controls. Four vines from each treatment combination were destructively sampled during dormancy to determine the levels and forms of N and carbohydrates. Nitrogen fertigation during the summer only slightly increased vine N concentration whereas foliar urea application in the fall significantly increased vine N concentration. In response to foliar urea application, concentrations of both free amino acid-N and protein-N increased, but the ratio of protein N to amino acid N decreased. Arginine was the most abundant amino acid in free amino acids and proteins, and its concentration was linearly correlated with vine N concentration. Concentrations of total non-structural carbohydrates (TNC) decreased slightly in response to N supply from fertigation. Foliar urea application in the fall significantly decreased TNC concentration at each N fertigation level. Starch, glucose and fructose decreased in response to foliar urea applications, but sucrose concentration remained unaffected. Approximately 60% of the carbon decrease in TNC caused by foliar urea application was recovered in proteins and free amino acids. We conclude that free amino acids account for a larger proportion of the N in vines sprayed with foliar urea, but proteins remain as the main form of N storage. In response to foliar urea application, part of the carbon from TNC is incorporated into proteins and free amino acids, leading to a decrease in the carbon stored in TNC and an increase in the carbon stored in proteins and free amino acids.