Search Results

You are looking at 61 - 70 of 1,460 items for :

  • "production system" x
  • All content x
Clear All
Full access

William J. Lamont Jr., Michael D. Orzolek, E. Jay Holcomb, Kathy Demchak, Eric Burkhart, Lisa White, and Bruce Dye

At the Pennsylvania State University (Penn State) High Tunnel Research and Education Facility, a system of production of high-value horticultural crops in high tunnels has been developed that uses plastic mulch and drip irrigation. The Penn State system involves small-scale, plastic-application equipment that prepares and applies plastic mulch and drip-irrigation tape to individual raised beds. It differs from the production system developed by researchers at the University of New Hampshire in which drip-irrigation tape is manually applied to the soil surface and then the entire soil surface in the high tunnel is covered with a black plastic sheet. An overview of the production system used in the Penn State high tunnels is presented in this report.

Full access

Carl E. Niedziela Jr., Christopher D. Mullins, T. David Reed, William H. Swallow, and Eric Eberly

Pre-cooled bulbs of two dutch iris (Iris ×hollandica) cultivars, Ideal and White Wedgewood, were grown and harvested as cut flowers in four production systems in a tobacco (Nicotiana tabacum) transplant greenhouse from late October until late January in two consecutive production years (2000-01 and 2001-02). All production systems (lily crates, lay-flat bags, pots, and float trays) utilized the same commercial peat-vermiculite, tobacco germination substrate. Stems developed more quickly but were shorter and lighter in 2001-02 than 2000-01 due to warmer growing conditions. Stems grown in float trays were shorter and lighter than other treatments in 2000-01 but similar to the others in 2001-02. Stems grown in lay-flat bags flowered earlier with similar or greater stem lengths and fresh weights as the other systems. Stems of `White Wedgewood' were longer and heavier than `Ideal'. In general, `White Wedgewood' provided more consistent production than `Ideal' in both production seasons. An economic analysis in this study concludes that a grower is unlikely to make money growing dutch iris in a tobacco transplant greenhouse using these production systems unless there is a targeted local market.

Free access

P.A.W. Swain and R.L. Darnell

`Sharpblue' southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrid) was grown in either a dormant or nondormant production system to determine the effect of production system on source limitations to fruit and vegetative growth. Source limited stages were evaluated in the two production systems by reducing reproductive sink load during either the fruit cell division or fruit cell enlargement stage. Source limitation during cell division was evaluated by removing 80% of the flower buds in late fall, since the majority of cell division in blueberry ovaries occurs before bloom. Source limitation during cell enlargement was evaluated by removing 80% of the fruit after fruit set the following spring. In the dormant production (DP) system, mean fruit dry weight (DW) was greatest in the flower bud removal treatment and least in the control (nonthinned) treatment, suggesting that cell number, rather than size, is more important in determining blueberry fruit weight in the DP system. Fruit in the dormant flower bud removal treatment may have approached maximum cell number and therefore fruit size; this was supported by the observation that significant depletion of root carbohydrate concentration did not occur in this treatment, as it did in the control treatment. Mean fruit DW in the nondormant production (NDP) system was greatest in the fruit removal treatment compared with the other two treatments, suggesting that cell enlargement played a larger role in determining fruit size in this production system. However, the effect of the flower bud removal treatment (and therefore the effect of cell division) on fruit DW in the NDP system was apparently masked by continued flower bud initiation in this system after flower bud removal in late fall. Continued floral initiation was apparently an alternative sink to increasing cell division in previously formed flower buds. In both systems, fruit removal increased vegetative growth compared with the control and flower bud removal treatments. Thus, both systems exhibited source limitations to fruit and vegetative growth, although the timing and extent of the limitation to fruit growth differed between the production systems.

Free access

Carl E. Niedziela* Jr. and Guochen Yang

Plug seedlings of lisianthus [Eustoma grandiflorum (Raf.) Shinn. `Mariachi'] and stock [Matthiola incana (L.) R.Br. `Cheerful White'] were planted on 20 Nov. 2003 followed by plug seedlings of snapdragon (Antirrhinum majus L. `Maryland') and seeds of sunflower (Helianthus annuus L. `Sunbrite') the next day. Each species was planted in four production systems (harvest lugs, lay-flat bags, pots, and polystyrene trays). Production systems were randomized in a Latin-square design with four replications of each system. Each treatment plot was 0.7 m × 1.1 m. Planting densities was 62 plants/m2 for stock and 31 plants/m2 for lisianthus, snapdragon, and sunflower. The harvest lugs were 55 cm × 37 cm × 16 cm. The lay-flat bags were 114 cm × 30 cm × 3 cm. The pots were 25 cm bulb pans. The polystyrene trays were 67 cm × 34 cm × 5 cm and contained 32 square cells. All of the containers were filled with the same tobacco germination media. The plants in the harvest lugs, lay-flat bags and pots were irrigated daily with 150 mg·kg-1 of N from 20N-4.4P-16.6K. The plants in the polystyrene trays were floated on a solution of 150 mg·kg-1 of N from 20N-4.4P-16.6K. Float solutions were monitored and adjusted weekly for volume and fertilizer concentration. Individual stems were harvested from each species at the appropriate stage of development for market. The weight and length of individual stems were recorded. Rate of growth and maturation differed between production systems and locations in the greenhouse. Detailed results will be presented.

Free access

Charles Marr, Wm. J. Lamont Jr, and Max Allison

Using an intensive vegetable production system of grain-strip windbreaks, plastic-mulch-covered planting be& installed with drip irrigation tubing, and fertigation through the drip system, >67,000 lb/acre (75,000 kg·ha-1) of seedless watermelons were produced. A floating row cover increased the yield by 14,000 lb/acre (16,380 kg·ha-1) by increasing earliness. The row cover also improved initial transplant survival. Earliness and the additional income generated from improved production should provide economic justification to growers considering floating row covers.

Free access

Logan S. Logendra, Thomas J. Gianfagna, David R. Specca, and Harry W. Janes

Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for singlecluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

Free access

D.J. Mills, C.B. Coffman, J.R. Teasdale, J.D. Anderson, and K.L. Everts

In the production of fresh-market vegetables, off-farm inputs, such as, plastic, nitrogen fertilizer, fungicides, insecticides, and herbicides are routinely used. One aim of the sustainable agriculture program at the Beltsville Agricultural Research Center is to develop systems that reduce these inputs. We have completed the second year of a study designed to examine foliar disease progress, foliar disease management, and marketable fruit yield in staked fresh-market tomatoes grown in low- and high-input production systems. Specifically, four culture practices (black plastic mulch, hairy vetch mulch, dairy manure compost, and bare ground) were compared in conjunction with three foliar disease management treatments (no fungicide, weekly fungicide, and a foliar disease forecasting model, TOMCAST). Within all culture practices, use of the TOMCAST model reduced fungicide input nearly 50%, compared with the weekly fungicide treatment, without compromising productivity or disease management. With regard to disease level, a significant reduction of early blight disease severity within the hairy vetch mulch was observed in 1997 in relation to the other culture practices. Early blight disease severity within the black plastic and hairy vetch mulches was significantly less than that observed in the bare ground and compost treatments in 1998. In addition, despite a 50 % reduction in synthetic nitrogen input, the hairy vetch mulch generated yields of marketable fruit comparable to or greater than the other culture practices. It appears that low-input, sustainable, production systems can be developed that reduce the dependence on off-farm inputs of plastic, nitrogen fertilizer, and pesticides, yet generate competitive yields.

Free access

Joseph A. Fiola, Gojko Jelenkovic, and Gene Galletta

The major objective of the NJUS Strawberry Breeding Program is the development of early ripening cultivars with excellent fruit flavor and size for production under conventional matted-row, and high density annual production systems. In the 1993 replicated Step 3 trials (1991; 1992 planted), sixteen selections had higher yield than `Earliglow' (8127, 11312 kg/Ha), ranging from 8433 kg/Ha to 13334 kg/Ha. Thirty-one had higher weighted average fruit weight (WAFW) over the season than `Earliglow' (8.8 g; 8.4 g), ranging from 9.0 g to 12.3 g.

Selection for phenotype best suited for annual stem includes: low runnering, strong vigor, earliness, and large fruit size. In 1993 harvested Step III, four selections had comparable or higher yield (range: 12,866 to 27,128 kg/Ha) than `Chandler' (12,950 kg/Ha), as well as larger primary and WAFW (range: 13.5 to 16.4 g). All selections were significantly earlier than `Chandler'. In summary, the NJUS Strawberry Breeding Program has selections for the matted-row and annual production systems which are early, with excellent fruit flavor, size, and firmness for fresh market production.

Full access

Bernadine C. Strik, Amanda Vance, David R. Bryla, and Dan M. Sullivan

., 2003b ; Strik et al., 2017a ; Williamson et al., 2006 ), which may affect soil properties and nutrient availability. Growers are inclined to use plant or animal-based composts in organic production systems. Compost can release 3% to 10% of total N for

Full access

Derek M. Law, A. Brent Rowell, John C. Snyder, and Mark A. Williams

A 2-year field study in Lexington, Ky., evaluated weed control efficacy and influence on yields of several organic mulches in two organically managed bell pepper (Capsicum annuum) production systems. Five weed control treatments [straw, compost, wood chips, undersown white dutch clover (Trifolium repens) “living mulch,” and the organically approved herbicide corn gluten] were applied to two production systems consisting of peppers planted in double rows in either flat, bare ground or on black polyethylene-covered raised beds. In the first year, treatments were applied at transplanting and no treatment was found to provide acceptable season-long weed control. As a result, bell pepper yields in both production systems were very low due to extensive weed competition. First year failures in weed control required a modification of the experimental protocol in the second year such that treatment application was delayed for 6 weeks, during which time three shallow cultivations were used to reduce early weed pressure and extend the control provided by the mulches. This approach increased the average weed control rating provided by the mulches from 45% in 2003 to 86% in 2004, and resulted in greatly improved yields. In both years, polyethylene-covered raised beds produced higher yields than the flat, bare ground system (8310 lb/acre compared to 1012 lb/acre in 2003 and 42,900 lb/acre compared to 29,700 lb/acre in 2004). In the second year, the polyethylene-covered bed system coupled with mulching in-between beds with compost or wood chips provided excellent weed control and yields. When using the wood chip mulch, which was obtained at no cost, net returns were $5587/acre, which is similar to typical returns for conventionally grown peppers in Kentucky. Net returns were substantially decreased when using compost due to the purchase cost. Results from this study indicate that shallow cultivation following transplanting, combined with midseason mulch application, resulted in high yields in an organically managed bell pepper system that were comparable to yields of most varieties grown conventionally in a variety trial conducted on the same farm.