Search Results

You are looking at 61 - 70 of 283 items for :

  • "osmotic potential" x
  • All content x
Clear All
Free access

Patrick T. Smith and B. Greg Cobb

Sweet pepper (Capsicum annuum L. cv. Keystone Resistant Giant #3) seeds were imbibed (primed) in salt solutions to determine a) what concentrations would inhibit radicle emergence and b) the influence this delay in radicle emergence would have on subsequent germination. Seeds were primed for 17 days at 23C in petri dishes with KNO3, KCl, NaCl, K2SO4, Na2SO4, 1 NaCl: 1 CaCl2 (mol/mol), Ca(NO3)2, CaCl2, Na2HPO4, and K2HPO4 in 10, 25, 50, 100, 200, or 300 mm of the salts. Germination was not inhibited in the 10- to 100-mm salt range, although most 200- and all 300-mm solutions reduced radicle emergence to <5.0%. The time to 50% germination (T50) of these primed seeds in water significantly (P < 0.01) decreased, when compared to unprimed seeds, and a negative correlation (r = – 0.98) was observed between this reduction and the osmotic potential of the solutions. Solutions with the highest osmotic potentials most severely reduced T50 without reducing the final germination percentage. For seeds primed in K2SO4 or Na2SO4 (200 and 300 mm) through 18 days, the reduction in T50 and duration of priming were negatively correlated (r = - 0.99). Seeds soaked in double distilled water and then dried germinated faster than controls, but not as fast as seeds primed in salt solutions. Priming of pepper seeds in this study was dependent on the osmotic potential of the solution, rather than a specific salt, and the duration of treatment.

Free access

Albert H. Markhart III and Mark S. Harper

Leaves on cut stems of commercially grown Rosa hybrida cv. Kardinal placed in preservative solutions containing sucrose developed necrotic dry patches that began interveinally and progressed toward the major veins until the entire leaf was dehydrated. Ultrastructural observations of initial damage showed disorganized protoplasm and plasmolyzed cells. Leaves on cut stems pretreated with abscisic acid for 24 hours and transferred to preservative solution containing sucrose remained healthy. We propose that sucrose accumulates in the mesophyll cell wall, thus decreasing apoplastic osmotic potential, leading to cell collapse and tissue death.

Free access

Jeffrey Melkonian and David W. Wolfe

Cucumber (Cucumis sativus L. cv. Marketmore 80) plants were exposed to a soil water deficit and subsequently rewatered. Maximum stress intensity was -1.5 MPa midday leaf water potential compared to -0.6 to -0.8 MPa in the well watered control, eight days after withholding water. Midday stomatal conductance {ks), leaf turgor potential and water potential decreased in the stress treatment compared to the control beginning at the first sampling, two days after withholding water. The decrease in all three was approximately linear with time over the stress. Decreased leaf elongation was observed at the second sampling, three days after the initial decline in ks and five days after withholding water. At similar relative water content {RWC), osmotic potentials of the stress and control treatments were the same throughout most of the stress. Further, there was no difference in osmotic potential, at the same RWC, between the stress and control treatments 12 - 16 hours after rewatering. Split-root experiments were also conducted to examine a possible role of a non-hydraulic signal from roots in drying soil in the regulation of ks and leaf elongation in cucumber. No conclusive evidence of a signal was found despite significant decreases in soil water potential of one-half of the root system of the stress plants. However, fluctuating vapor pressure gradients (vpg) may have obscured evidence of a signal.

Free access

A.R. Biggs

Whole-shoot water potential, osmotic potential of the xylem fluid, and bark water potential were examined from late winter through early spring for six peach [Prunus persica (L.) Batsch.] cultivars varying in relative susceptibility to Leucostoma canker. There were significant differences among cultivars for whole-shoot water potential on all 11 dates tested in 1986, but not in 1985. The date effect was not consistent among cultivars, although when averaged across dates, the whole-shoot water potential of `Loring' was significantly more negative than that of `Candor' or `Garnet Beauty'. There were significant differences among cultivars for xylem fluid osmotic potential on one of five dates tested in 1985 and three of 11 dates tested in 1986, although cultivar differences were not consistent between years. Cultivars exhibited differences in bark water potential on three of five dates tested in 1985, with `Loring' exhibiting the least negative values when averaged across dates. There were only occasional significant correlations of the water status characteristics with relative susceptibility to Leucostoma canker or suberin accumulation. Measurements of plant water status among cultivars or genotypes in peach do not appear to be reliable indicators of susceptibility to Leucostoma spp. or wound response.

Free access

M.K Upadhyaya, S.I. Shibairo, and P.M.A. Toivonen

To understand the relationship between preharvest water stress and postharvest weight loss, carrot cultivars Eagle and Paramount were grown in muck soil in 6-L pots (eight carrots per pot) in a greenhouse at the Univ. of British Columbia. The plants were watered to field capacity every second day for 4 months before receiving 100, 75, 50, and 25% field capacity water stress treatments, henceforth referred to as low, medium, high, and severe water stress, respectively. Postharvest weight loss of carrots was monitored at 13°C and 32% relative humidity. Carrot weight loss increased with duration of storage in all treatments. It was low in the low-water-stressed and high in severely water-stressed carrots for both cultivars. Root crown diameter, weight, water, and osmotic potential decreased, and specific surface area and relative solute leakage increased with increasing preharvest water stress. Water potential followed by relative solute leakage were the variables that affected weight loss the most. The results show that carrots adjust to water stress by lowering water and osmotic potential. Preharvest water stress lowers membrane integrity of carrot roots making them lose more moisture during storage.

Free access

Robert M. Augé, Xiangrong Duan, Jennifer L. Croker, Craig D. Green, and Will T. Witte

We compared the potential for foliar dehydration tolerance and maximum capacity for osmotic adjustment in twelve temperate, deciduous tree species, under standardized soil and atmospheric conditions. Dehydration tolerance was operationally defined as lethal leaf water potential (Ψ): the Ψ of the last remaining leaves surviving a continuous, lethal soil drying episode. Nyssa sylvatica and Liriodendron tulipifera were most sensitive to dehydration, having lethal leaf Ψ of –2.04 and –2.38 MPa, respectively. Chionanthus virginiana, Quercus prinus, Acer saccharum, and Quercus acutissima withstood the most dehydration, with leaves not dying until leaf psi dropped to –5.63 MPa or below. Lethal leaf Ψ (in MPa) of other, intermediate species were: Quercus rubra (–3.34), Oxydendrum arboreum (–3.98), Halesia carolina (–4.11), Acer rubrum (–4.43), Quercus alba (–4.60), and Cornus florida (–4.88). Decreasing lethal leaf Ψ was significantly correlated with increasing capacity for osmotic adjustment. Chionanthus virginiana and Q. acutissima showed the most osmotic adjustment during the lethal soil drying episode, with osmotic potential at full turgor declining by 1.73 and 1.44 MPa, respectively. Other species having declines in osmotic potential at full turgor exceeding 0.50 MPa were Q. prinus (0.89), A. saccharum (0.71), Q. alba (0.68), H. carolina (0.67), Q. rubra (0.60), and C. florida (0.52). Lethal leaf Ψ was loosely correlated with lethal soil water contents and not correlated with lethal leaf relative water content.

Free access

S.I. Shibairo, M.K. Upadhyaya, and P.M.A. Toivonen

Studies were carried out to understand the effects of moisture loss on water potential and root deterioration in carrot (Daucus carota L. `Eagle') roots during short-term storage. The roots were stored at various temperatures and relative humidities (RH) to provide 0.7 (low), 3 (medium), and 9 mbars (high) of water vapor pressure deficit (WVPD). Carrots at high WVPD lost the most weight, followed by those at medium and lowest WVPD. Water potential and osmotic potential of the carrot tissue at high WVPD did not change significantly up to 6 days, but decreased thereafter. There was no change in water potential and osmotic potential for carrots at medium and low WVPD. A significant quadratic relationship (P = 0.05, r = –0.764) between water potential and carrot root weight loss was observed. Relative electrolyte leakage increased over time in carrots at the high WVPD. At medium WVPD, relative electrolyte leakage did not change up to 6 days, but increased significantly thereafter. Carrots at the low WVPD did not change in relative electrolyte leakage. Relative electrolyte leakage and weight loss correlated positively (P = 0.05, r = 0.789). The results suggest that water stress during short-term storage causes tissue deterioration that may further increase rate of moisture loss and hence reduce the shelf life of carrots.

Free access

Genhua Niu and Denise S. Rodriguez

Use of recycled water to irrigate urban landscapes may be inevitable, because the freshwater supply has been diminishing and the population continues to grow in the arid and semiarid southwestern United States. However, little information exists on the performance of landscape plants irrigated with nonpotable water. Two greenhouse studies were conducted during the summer and the fall to characterize the relative salt tolerance of five herbaceous perennials by irrigating the plants with a saline solution at an electrical conductivity (EC) of 0.8 dS·m–1 (tap water), 2.0 dS·m–1, or 4.0 dS·m–1. In the summer study, after 10 weeks of treatment, Achillea millefolium L., Gaillardia aristata Foug., and Salvia coccinea Juss ex J. had an aesthetically acceptable appearance for landscape performance (visual quality scores of 4 points or more), whereas Agastache cana (Hook.) Woot. & Standl. and Echinacea purpurea (L.) Moench had relatively low tolerance to salinity. Dry weight of shoots of A. millefolium, A. cana, and G. arstata was lower at elevated salinity levels. In the fall study, A. millefolium, E. purpurea, G. arstata, and S. coccinea had acceptable growth and visual quality at elevated salinity levels, whereas A. cana had lower quality and reduced growth. Dry weight of shoots was lower in G. arstata and A. millefolium at an EC of 2.0 dS·m–1 or 4.0 dS·m–1. Leaf osmotic potential of all species in the summer experiment was significantly lower at higher salinity compared with the control. In the fall experiment, leaf osmotic potential in A. millefolium, E. purpurea, and G. aristata at 4 dS·m–1 was lower compared with lower salinity treatment and the control. Leaf osmotic potential in the fall was higher than that of the same species at the same salinity level in the summer experiment, indicating that plants in the fall were less stressed than in the summer. Combined the results from both experiments, the authors concluded that A. millefolium, G. arstata, and S. coccinea had a relatively high salt tolerance (as much as 4 dS·m–1 of irrigation water under greenhouse conditions) among the tested species, whereas A. cana and E. purpurea were not tolerant to salt and should not be irrigated with low-quality water.

Free access

Seong-Hee Lee, Soon-Ho Ha, and Gap-Chae Chung

In order to diagnose the nutritional disorders caused by various environmental stress, biochemical test, xylem sap analysis and colorimetric petiole analysis were used to assay symptoms well before the severe development. Among the various enzymatic analysis, alkaline phosphatase activity was highly specific to calcium deficiency while in vivo nitrate reductase activity was not stable parameter in response to nitrogen deficiency. Determination of nitrogen, phosphorus and magnesium by colorimetric petiole analysis was sensitive to induced deficiencies. The status of potassium in the plant, however, could be better determined with the xylem sap analysis. Salinity stress induced by low osmotic potential of the nutrient solution increased the activity of alkaline phosphatase, showing similar results as calcium deficiency. Magnesium and phosphorous contents by the colorimetric petiole analysis were particularly low when the roots in anoxia.

Free access

Irvin Widders and Michael Kwantes

Pea (Pisum sativum cv. Argenteum) plants were exposed to nutrient culture solutions supplemented with 0, 50, 100, and 200 mM NaCl. Within 2 h after initial exposure, significant increases in Na concentration were observed within the apoplast of mesophyll tissue from fully expanded leaflets, as determined by elution analysis. Estimated apoplastic Na contents at 6 h ranged from 1.8 to 6.9 μmol Na/g fr wt with the highest contents in leaflets from plants placed in 100 and 200 mM NaCl. Osmotic potentials of expressed sap from leaflets declined from -0.82 MPa at 0 time to -0.92 and -1.14 MPa by 3 h for the 50 and 100 mM NaCl treatments, respectively. K concentrations within the mesophyll apoplast were also found to increase within the short term in response to increasing nutrient solution NaCl concentrations. The potential short. term osmotic effects of apoplastic ion accumulation within leaf mesophyll tissue under saline conditions will be discussed.