Search Results

You are looking at 61 - 70 of 2,816 items for :

  • "correlation" x
  • All content x
Clear All
Free access

P. Perkins-Veazie and J.K. Collins

The red flesh of watermelon contains lycopene, a pigment with antioxidant properties that help prevent certain types of cancers. This experiment was done to determine cultivar variation in lycopene content, and the effectiveness of colorimetric measurements for predicting lycopene content. Ten ripe melons per cultivar of hybrid, open-pollinated, and triploid types were selected from field plantings at Lane, Okla. Melons were cut transversely and color measured with a colorimeter at three heart and three locule sites, in a counterclockwise rotation starting at the ground spot. For lycopene content, a 100-g sample of heart tissue was removed, extracted with a hexane-acetone-ethanol mixture, and lycopene concentration measured spectrophotometrically at 503 nm. Lycopene content varied among cultivars, from 33.96 μg·g–1 in `Crimson Sweet' to 66.15 μg·g–1 in `Crimson Trio'. Chroma and “a” colorimeter values were highly correlated with lycopene content (P < 0.001). Linear and quadratic regression of lycopene against colorimeter values yielded an R 2 of 0.55. Results indicate that, like tomatoes, watermelon cultivars vary widely in lycopene content. Colorimeter readings did not adequately predict lycopene values.

Free access

L.E. Williams and F.J. Araujo

A study was conducted to compare three measurements of determining water status of grapevines (Vitis vinifera L.) in the field. Predawn leaf water potential (ΨPD), midday leaf water potential (Ψl), and midday stem water potential (Ψstem) were measured on `Chardonnay' and `Cabernet Sauvignon' grapevines grown in Napa Valley, California late in the 1999 growing season. Both cultivars had been irrigated weekly at various fractions (0, 0.5, and 1.0 for `Chardonnay' and 0, 0.5, 0.75, and 1.5 for `Cabernet') of estimated vineyard evapotranspiration (ETc) from approximately anthesis up to the dates of measurements. Predawn water potential measurements were taken beginning at 0330 hr and completed before sunrise. Midday Ψl and Ψstem measurements were taken only between 1230 and 1330 hr. In addition, net CO2 assimilation rates (A) and stomatal conductance to water vapor (gs) were also measured at midday. Soil water content (SWC) was measured in the `Chardonnay' vineyard using a neutron probe. Values obtained for ΨPD, Ψl, and Ψstem in this study ranged from about -0.05 to -0.8, -0.7 to -1.8, and -0.5 to -1.6 MPa, respectively. All three measurements of vine water status were highly correlated with one another. Linear regression analysis of Ψl and Ψstem versus ΨPD resulted in r 2 values of 0.88 and 0.85, respectively. A similar analysis of Ψl as a function of Ψstem resulted in an r2 of 0.92. In the `Chardonnay' vineyard, all three methods of estimating vine water status were significantly (P < 0.01) correlated with SWC and applied amounts of water. Lastly, ΨPD, Ψl, and Ψstem were all linearly correlated with measurements of A and gs at midday. Under the conditions of this study, ΨPD, Ψl, and Ψstem represent equally viable methods of assessing the water status of these grapevines. They were all correlated similarly with the amount of water in the soil profile and leaf gas exchange as well as with one another.

Free access

R.J. Griesbach

The environment can affect the intensity of flower color in Eustoma grandiflorum. Low light and alkaline pH within the growing cell can lead to reduced color intensity. Two independent causes are responsible for the decrease in the intensity of flower color. 1) Older flowers were more alkaline than freshly opened flowers. A 7% increase in pH was related with a 10% reduction in color intensity. 2) Flowers that open under low light were paler than those opening under high light intensity. A 25% decrease in light intensity was related to a 30% reduction in the concentration of anthocyanin and a 40% reduction in color intensity.

Free access

T.G. Boucounis, T. Whitwell, and J.E. Toler

Ten crops were evaluated for potential use as field bioassay species for cinmethylin and chlorimuron application rates in two soil types. Cinmethylin injured sweet corn (Zea mays L.) and grain sorghum [Sorghum bicolor (L.) Moench] at concentrations as low as 0.28 kg·ha-1 on either soil type, while broadleaf crops were tolerant. Chlorimuron injured sweet corn, grain sorghum, radish (Raphanus sativus L.), cucumber (Cucumis sativus L.), and watermelon [Citrullis lanatus (Thunb.) Mansf.] at rates ≥ 2.5 g·ha-1, and squash (Cucurbita pepo L.) at rates ≥ 5.0 g·ha-1 on a Dothan sand. In a Congaree silt loam, chlorimuron injured cucumber at rates ≥ 5.0 g·ha-1, sweet corn, watermelon, and squash at rates ≥ 10 g·ha-1, and grain sorghum, radish, and cotton (Gossypium hirsutum L.) at rates ≥ 20 g·ha-1. Soybean and snapbean (Phaseolus vulgaris L.) were tolerant to chlorimuron in both soil types. Cinmethylin activity was not altered by soil type, but with chlorimuron greater crop injury was observed in the Dothan sand than in the Congaree silt loam. Sweet corn and grain sorghum were the most sensitive indicator species to cinmethylin and cucumber was the most sensitive to chlorimuron in both soils. Plant emergence and population alone are not valid indicators for crop tolerance to herbicides. Quantitative measurements such as shoot dry weight were more indicative of crop susceptibility to chlorimuron than plant populations. Chemical names used: exo -1-methyl-4-(1-methylethyl)-2 -[(2-methylphenyl) methoxy]-7-oxabicyclo[2.2.1]heptane (cinmethylin); 2-[[[[(4-chloro-6-methoxy-2-pyrimidinyl)amino] carbonyl]amino] sulfonyl]benzoic acid (chlorimuron).

Free access

Alison R. Cutlan, John E. Erwin, and James E. Simon

Parthenolide, a biologically active sesquiterpene lactone found in feverfew [Tanacetum parthenium (L.) Schultz. Bip.], has been indirectly linked to the antimigraine action of feverfew preparations. Commercial products of feverfew leaves vary widely in parthenolide content (0-1.0%/g dwt). No comprehensive studies have quantified parthenolide variation among feverfew populations or cultivars, and whether morphological traits are correlated with this natural product. In this study, 30 feverfew accessions were examined for parthenolide content, morphological traits, and seed origin. Statistically significant differences in parthenolide levels were found among the populations studied. Parthenolide content ranged from (0.012% ± 0.017 to 2.0% ± 0.97 /g dwt) as determined by HPLC-UV-MS. Higher parthenolide levels tended to be in wild material (0.41% ± 0.27) as opposed to cultivated material (0.19% ± 0.09). Parthenolide levels correlated with flower morphology: disc flower (0.49% = B1 0.36), semi-double (0.38% ± 0.13), double (0.29% ± 0.16), and pompon-like flower (0.22 ± 0.14). Leaf color also appeared to be indicative of parthenolide levels, with the light-green/golden leafed accessions showing significantly higher parthenolide content than darker-leafed varieties, but whether this was due to inadvertent original selection of a high parthenolide-containing golden leaf selection is not yet known. This study does show that further selection for improved horticultural attributes and natural product content is promising to improve feverfew lines for the botanical/ medicinal plant industry.

Free access

Ann Marie Connor, James J. Luby, and Cindy B.S. Tong

Variation in antioxidant activity (AA), total phenolic content (TPH), and total anthocyanin content (ACY) was examined in 1998 and 1999 in fruit of 52 (49 blue-fruited and 3 pink-fruited) genotypes from a blueberry breeding population. The species ancestry included Vaccinium corymbosum L. (northern highbush blueberry), V. angustifolium Ait. (lowbush blueberry), V. constablaei Gray (mountain highbush blueberry), V. ashei Reade (rabbiteye blueberry), and V. myrtilloides Michx. (lowbush blueberry). Using a methyl linoleate oxidation assay (MeLO) on acidified methanolic extracts of the berries, a 5-fold variation was found in AA in 1998 and a 3-fold variation in 1999 among the blue-fruited genotypes. Analyses of variance (ANOVA) revealed variation among genotypes (P < 0.0001) in single and combined years, regardless of inclusion of pink-fruited selections and adjustment for berry size. While mean AA of all genotypes did not change between the 2 years, ranking of some genotypes for AA changed significantly between 1998 and 1999. Of the 10 genotypes that demonstrated the highest AA in 1998, four were among the 10 genotypes that demonstrated highest AA in 1999. Similarly, of the 15 genotypes with the highest AA, 10 were the same both years. As with AA, mean TPH of all genotypes did not change between years and ANOVA demonstrated genotypic variation regardless of adjustment for berry size/weight or exclusion of pink-fruited selections. Changes in genotype rank occurred between years. The difference in TPH between lowest- and highest-ranking blue-fruited genotypes was ≈2.6-fold in both 1998 and 1999. Seven of the 10 highest-ranking genotypes were the same both years and TPH correlated with AA (r = 0.92, P < 0.01) on a genotype mean basis for combined years. ACY correlated less well with AA (r = 0.73, P < 0.01 for combined years). When genotypes were categorized into six groups according to species ancestry, V. myrtilloides and V. constablaei × V. ashei crosses ranked highest and second highest, respectively, for AA in both years. The groups comprised of V. corymbosum genotypes, V. angustifolium genotypes, and those with both V. corymbosum and V. angustifolium in their lineage were indistinguishable from each other. Samples from some of the genotypes were analyzed for oxygen radical absorbance capacity and ferric-reducing antioxidant power, and these aqueous-based antioxidant assays correlated well with the lipid emulsion-based MeLO (all r ≥ 0.90, P < 0.01). The three antioxidant assays may be equally useful for screening in a blueberry breeding program and the choice of assay may depend on the goal of the program and the resources available.

Free access

Kevin L. Cook, August C. Gabert, and James R. Baggett

One concern that has restricted the use of parthenocarpic pickling cucumber cultivars in the United States has been firmness of fruit processed by brining. Selection for mesocarp and endocarp firmness, in addition to morphological traits associated with firmness, such as fruit length, length: diameter ratio, seed cavity size, and seed cavity: fruit diameter ratio, may produce parthenocarpic cultivars with improved quality. Combining ability of a set of parthenocarpic and nonparthenocarpic parents for fruit firmness and these related morphological characteristics were investigated using a factorial mating design grown in 1992 and 1994 at Brooks, Ore. General combining ability was greater than specific combining ability for all traits before and after processing. Fruit firmness, mesocarp firmness, endocarp firmness, length, and length: diameter ratio were positively correlated phenotypically and genetically to one another. Seed cavity diameter and seed cavity: fruit diameter ratio were positively correlated phenotypically and genetically, but were negatively correlated to all other traits.

Free access

Raymond Fung*, Chien Wang, David Smith, Kenneth Gross, Yang Tao, and Meisheng Tian

Methyl salicylate (MeSA) and Methyl jasmonate (MeJA) treatments increased chilling resistance of light red tomato (Lycopersicon esculentum cv. Beefsteak) and extended shelf life and fresh-cut quality. We previously showed induction of AOX expression by low temperature and that induction of AOX transcript by MeSA and MeJA is correlated with resistance against chilling injury in peppers. Here, we investigate tomato, which is genetically closely related to peppers and belongs to the same Solanaceae family. In particular, we used four EST tomato clones of AOX from the public database that belong to two distinctly related families, 1 and 2 defined in plants. Three clones designated as LeAOX1a, 1b and 1c and the fourth clone as LeAOX2. Probes for these four genes were designed and Southern blotting done to confirm that they do not cross-hybridize. We will present data from Southern, Northern hybridization and RT-PCR to show: (1) gene copy number of each of these AOX members in the tomato genome; (2) gene-specific expression profiles in response to MeSA and MeJA in cold stored tomato; and (3) the relative transcript abundance of these four AOX genes.

Free access

M.E. Saltveit

Tomato fruit undergo an orderly series of physiological and morphological changes as they progress from mature-green (MG) to red-ripe. Fruit are commercially harvested at the MG stage, a stage which often encompasses fruit of varying degrees of maturity. The ability to predict the time required for MG fruit to ripen would reduce variability in experiments and could be commercially used to pack fruit that would ripen uniformly. Nuclear magnetic resonance (NMR) imaging can nondestructively measure internal changes associated with plant growth and developmental. In this study, NMR images were taken of freshly harvested tomato fruit (Lycopersicum esculentum cv. Castlemart) at different stages of maturity and ripeness. Measurements were also made of the stage of ripeness, rate of respiration and ethylene production, lycopene and chlorophyll content, density of the pericarp wall, and condition of locular tissue. NMR images showed substantial charges in the pericarp wall and locular tissue during maturation and ripening of tomato fruit. However, it was difficult to objectively evaluate these visual changes with other ripening parameters. For example, increased lightness and graininess of the pericarp wall image was associated with a decrease in wall density; while lightening of the locular image was associated with tissue liquefacation. Use of NMR imaging in studies of tomato fruit ripening will be discussed.

Free access

Marlene Cross, Bradford Bearce, and Rajeev Arora

The vase life of roses grown in coal bottom ash (CBA)-amended media was evaluated. CBA is enriched in calcium, a nutrient implicated in delaying senescence. Two rose cultivars, Cara Mia and Dakota, were grown (from started eye plants) in four media: a 50% CBA medium and a peat:vermiculite medium amended with calcitic and dolomitic lime (1:1) were used as “high calcium” media, whereas a 25% CBA medium and a peat:vermiculite medium amended with dolomitic lime only were used as “low calcium” media. Vase life of the freshly harvested roses was evaluated. Elemental analysis of the leaves showed that roses grown in the “high calcium” media had greater calcium in the leaf tissue as well as longer vase lives (12.6 and 13.5 days) when compared to those grown in the “low calcium” media (12.1 and 10.9 days). However, petal tissue Ca was not affected by media and was not correlated with vase life. Petal tissue calcium was ≈15 times lower than leaf tissue calcium. Calcium and magnesium increased in the petal tissue over the vase life of the senescing petals. A comparison of `Cara Mia' roses (vase life of 14 days) and `Dakota' roses (vase life of 8.5 days) showed that the longer-lived `Cara Mia' had lower leaf and petal calcium levels. Both varieties followed a similar kinetics of electrolyte leakage (total E.C. and K) during their respective vase lives.