Search Results

You are looking at 51 - 60 of 225 items for :

  • self-compatibility x
  • All content x
Clear All
Free access

Thomas M. Gradziel

All of the major California almond varieties are self-incompatible necessitating the interplanting of pollinizer varieties. The incorporation of self-compatibility into the dominant variety Nonpareil through mutation or genetic engineering would greatly improve cropping efficiency. Negative effects of inbreeding on resultant seed and seedling quality could negate production advantages. Inbred seed of Nonpareil were obtained by: a) enclosing mature trees in pollination cages containing bees at flowering, and, b) controlled crosses to a Nonpareil mutation (Jeffries) which is unilaterally compatible when used as the seed parent. Selfed seed set from caged trees was less than 0.001% of available flowers. Seed set from crosses to the Jeffries mutation averaged 34.4% which was not significantly different than outcrossed controls. No significant loss in kernel weight and dimensions were observed in any of the inbred material when compared with outcrossed controls though a higher proportion of the inbred seed and seedlings failed to develop fully. Both average tree height and trunk diameter after 1 year of growth was significantly lower in inbred vs. outcrossed material. Results suggest no major penalty to kernel quality following self-pollination, though losses in progeny vigor should be a concern when utilizing selfed seed in variety development programs.

Free access

James Hill Craddock, R.J. Sauve, S.E. Schlarbaum, J. Skinner, R.N. Trigiano, M.T. Windham, and W.T. Witte

Hand pollinations and honey bees were used to cross Cornus florida cultivars in a series of experiments investigating dogwood pollination biology from a breeding viewpoint and testing the use of insects (domestic honey bees and ladybug beetles as pollinators in dogwood breeding. Experiments were conducted to study possible incompatibility between dogwood cultivars and to determine if self-compatibility and self-fertility occur in Cornus florida. Since 1993, ≈200 seedlings have been produced by hand and insect-mediated pollinations. Honey bees can be used in dogwood breeding. Trees cross pollinated by ladybeetles had lower fruit set than trees cross pollinated by honey bees. Greenhouse forcing to accelerate anthesis and cold storage to delay the onset of bloom of container-grown trees can extend the dogwood breeding season effectively.

Free access

Doron Schneider, Raphael A. Stern, and Martin Goldway

Apple (Malus domestica) has a gametophytic self-incompatibility (GSI) system. Consequently, fertilization is achieved by cross-pollination with a compatible pollinator. Compatibility is governed by a multiallelic S locus. Cultivars are fully compatible when both of their S-loci differ and are semi compatible when one locus is identical and the other differs. In a previous study we found that the fruit set and yield of the apple cultivar `Topred' was reduced when it was pollinated by a semi compatible cultivar. To examine if this occurrence is a general feature in apples grown under suboptimal conditions, three additional cultivars, `Golden Delicious', `Granny Smith' and `Royal Gala', were studied as pollen recipients of semi and fully compatible pollinators. Based on PCR analysis of the S-RNase allele, it was determined that the pollination rate of the semi compatible was significantly lower than that of the fully compatible pollinator in all cases. This was reflected by the lower fruit set and seed set of `Golden Delicious' and `Royal Gala', but not of `Granny Smith'. In hand pollination experiments, where pollen was in excess, no difference was found between the semi and fully compatible pollinators in all three cases. These results indicate that the low yield, conferred by semi compatible pollinators, is due to insufficient cross-pollination (and not to cultivar characteristics). Thus, low yields due to semi compatibility may be avoided by appropriate honeybee management that will increase pollination. Still, under suboptimal conditions, for growth and pollination, full compatibility is preferable.

Free access

Chih-Cheng T. Chao

A pollination study was conducted using `Nules', `Fina Sodea', `Marisol', `Fina' Clementine, `Afourer', `Tahoe Gold', and `Gold Nugget' mandarin. The fruit sets from selfing of `Fina', `Marisol', `Fina Sodea', `Nules' Clementines and `Afourer' mandarin were very low or near 0. The open pollinated Clementines had very low fruit set and there were very few seeds per fruit. Fruit set was highest (20% to 40%) in cross-pollination between two Clementines, `Nules' and `Fina Sodea', and `Afourer' mandarin and their reciprocal crosses. There were averaged 23 to 32 seeds per fruit in Clementines × `Afourer' mandarin crosses and averaged 5 to 12 seeds per fruit in `Afourer' mandarin × Clementines crosses. Compatibility among Clementine mandarins and `Afourer' mandarin is very high and caution should be taken to properly isolate these two types of mandarins when planting to produce seedless fruit. The diploid `Nules' Clementine × triploid `Tahoe Gold' mandarin gave 14% and 17% fruit sets in 2002 and 2003, with an average 2 seeds and 9 seeds per fruit in 2002 and 2003, respectively. Caution should also be taken when planting triploid seedless `Tahoe Gold' mandarin near diploid `Nules' Clementine to avoid seeds. The compatibilities and seediness between diploid mandarin cultivars and new seedless triploid mandarin cultivars need to be tested to ensure the pollen of the new triploid cultivars will not cause seeds in the existing diploid cultivars.

Free access

Neil O. Anderson and Peter D. Ascher

Chrysanthemum [Dendranthema ×grandiflora Tzvelv. (syn. Chrysanthemum ×morifolium Ramat.)] breeding programs have been selecting for reduced expression of self-incompatibility (via pseudo-self-compatibility) to create inbred families with selected genotypes to serve as parents for F1 hybrid chrysanthemum seed production. However, it is not known to what extent inbreeding is affecting fertility in this outcrossing, heterozygous species. The objective of this research was to assess male/female fertility changes (gain/loss) in successive inbred generations of chrysanthemums. Pseudo-self-compatible chrysanthemum parents (n = 41 inbred, noninbred, and recombinant inbred) were chosen for fertility analyses. As many as three generations of inbreds (I1, I2, and I3) from self-pollinations were created using rapid generation cycling. Female and male fertility levels of the parents and all derived inbred populations were assessed using outcross seed set and pollen stainability, respectively. Average seed set ranges were 0.3% to 96.1% (inbred parents), 24.5% to 38.5% (noninbred parents), and 0.9% to 85.1% (recombinant inbred parents); these began decreasing in the I1 and continued to decline steadily into the I3. Statistically significant (P < 0.05) decreases in seed set occurred in n = 23 (56.1%) inbred families; the remaining inbred families had similar or higher fertility than the parents. Pollen stainability was >50% for the parents, but began declining in some inbred families as inbreeding progressed. Fertility reductions were attributed to inbreeding depression. Lack of significant fertility losses in other inbred families demonstrates the opportunity of selection of fertile inbred parents for use in hybrid seed production.

Free access

Neil O. Anderson and Peter D. Ascher

Advanced, two-species CBC individuals were used to create the first-ever, three-species hybrids between P. acutifolius, P. coccineus and P. vulgaris. M6 (2 species) × H15 (3 species) is the only three-species hybrid to date that segregates for diagnostic traits. Three generations of M6 (F2, F3, F4,) were used to create the series. Hybrid breakdown was most severe with M6 F2 × H15, producing 100% cripples that died before anthesis. In M6 F3 × H15 hybrids, segregation for stigma position, flower color, germination type, growth habit, leaf length/width ratios, and seed morphology commenced in the F1 hybrid generation. F, phenotypes, with P. coccineus flowers & seeds and P. acutifolius leaves & growth habit, had severe hybrid breakdown with weak self compatibility; purple seed coats, with or without black circundatus markings, and new flower colors were also produced. F1's with P. vulgaris growth habits were self-fertile and ceased segregating after the F2.

Free access

Neil O. Anderson and Peter D. Ascher

Lythrum species (Lythraceae), found both in the Old and New Worlds, possess heterostyly (macroscopic differences in anther and style lengths). SI is linked with heterostyly in tristylous L. salicaria, allowing for visual identification of compatibility relationships. Five Minnesota populations of distylous L. alatum (short & long styles/anthers) were examined for fertility and linkage between distyly and SI. Pollen was not inhibited from germination, stigmatic penetration, or stylar growth in compatible crosses. Average cross-compatible seed set for each population was 7-33 seeds/capsule for short- and 27-69 for long-styled plants. With the exception of the Iron Horse Prairie population, there were no significant differences in mean seed set/capsule between genotypes, style morphs, or their interaction for compatible crosses. Zero self seed set predominated, although 0.8±1.8 seeds/capsule were produced by short styles and 1.2 ±2.3 by long styles from Iron Horse Prairie. In those individuals that were SI, pollen tube growth was inhibited following self pollinations.

Free access

K. Ikeda, A. Watari, K. Ushijima, H. Yamane, N.R. Hauck, A.F. Iezzoni, and R. Tao

S4′ is a pollen-part mutant in sweet cherry (Prunus avium L.) that is extensively used to develop self-compatible cultivars. The S4′-haplotype is known to have a functional stylar component and a nonfunctional pollen component. The pollen component in sweet cherry necessary for the specificity of the pollen reaction is believed to be an S-haplotype specific F-box protein gene, called SFB. This study describes two molecular markers that distinguish between SFB4 and SFB4′ by taking advantage of a four base pair deletion in the mutant allele. The resulting polymerase chain reaction (PCR) products can either be separated directly on a polyacrylamide gel or they can be subjected to restriction enzyme digestion and the different sized products can be visualized on an agarose gel. The latter technique utilizes restriction sites created in the PCR products from the SFB4′ allele, but not the SFB4 allele. Because the primer sets created differential restriction sites, these primer sets were termed dCAPS (derived cleaved amplified polymorphism sequence) markers. These molecular assays can be used to verify self-compatibility conferred by the S4′-haplotype.

Free access

Bruce W. Wood

Pecan is wind pollinated, exhibits heterodichogamy and are either protandrous (I) or protogynous (II). Orchards are typically established using two complimentary flowering types but with no further scrutiny as to the degree of compatibility of these two types. Additionally, orchards are sometime established with a very low frequency of pollinator. An evaluation of several orchards revealed that yield losses are due to poor pollination is likely common. Data indicate that trees beyond about 46 m (150 feet) from a complementary pollinator exhibit substantial reductions in fruit-set; therefore, large block-type plantings are disadvantaged. Flowering data over several years show that Type I and Type II cultivars are often functionally noncomplementary, suggesting that pecan cultivars should also be identified with a seasonal identification (i.e., early, mid, and late). Data also indicate that dichogamy patterns substantially change as trees age or with abnormally warm or cool springs; hence, pollination patterns will vary depending upon orchard age. Data indicate that orchards should be comprised of 3+ cultivars. RAPD-DNA analysis of “hooked-nuts” indicates that this trait is not reliable as an indicator of selfing.

Free access

Ossama Kodad and Rafel Socias i Company

Most almond breeding programs have fostered the development of self-compatible cultivars to overcome the problems related to cross-pollination of this mostly self-incompatible species ( Socias i Company, 2002 ). Consequently, self-compatibility