Search Results

You are looking at 51 - 60 of 330 items for :

  • root-knot nematode x
  • All content x
Clear All
Free access

R.L. Fery, P.D. Dukes Sr., and J.A. Thies

The southern root-knot nematode (Meloidogyne incognita) is a major pest of bell peppers (Capsicum annuum) in the United States. Since none of the leading bell pepper cultivars grown in the U.S. exhibit adequate levels of resistance, a breeding program was initiated to incorporate the N root-knot nematode resistance gene into commercial bell pepper germplasm. A backcross breeding procedure was used. The donor parent of the N gene was the open-pollinated, pimiento pepper cultivar Mississippi Nemaheart, and the recurrent parents were the open-pollinated bell pepper cultivars Keystone Resistant Giant and Yolo Wonder. A large number of homozygous resistant BC6 populations were evaluated in field tests in 1995, and two lines (PA-440, an isoline of `Keystone Resistant Giant', and PA-453, an isoline of `Yolo Wonder') were selected for further field evaluation and seed multiplication in 1996. Results of replicated field and greenhouse tests conducted in 1996 indicate that root-knot nematode resistance has been incorporated successfully in `Keystone Resistant Giant' and `Yolo Wonder' backgrounds.

Free access

Richard L. Fery and Judy A. Thies

Scotch Bonnet and Habanero peppers, extremely pungent cultivar classes of Capsicum chinense Jacq., are increasing in popularity in the United States. Because the southern root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood, is a major pest of many C. annuum cultivars, a series of greenhouse and field experiments was conducted to determine if Scotch Bonnet and Habanero peppers from available commercial and private sources also are vulnerable to the pest. In an initial greenhouse test, a collection of 59 C. chinense cultigens was evaluated for reaction to M. incognita race 3. All cultigens obtained from commercial sources were moderately susceptible or susceptible. However, four accessions obtained through Seed Savers Exchange listings exhibited high levels of resistance. Three of these cultigens (PA-353, PA-398, and PA-426) were studied in subsequent greenhouse and field plantings, and each was confirmed to have a level of resistance similar to that available in C. annuum. All three of the resistant cultigens are well-adapted and each is potentially useful in commercial production without further development. None of the Habanero cultigens was resistant to the southern root-knot nematode. The resistant Scotch Bonnet cultigens may serve as sources of resistance for development of root-knot nematode—resistant Habanero peppers.

Free access

Richard L. Fery and Judy A. Thies

homozygous for a dominant gene conditioning a high level of resistance to the southern root-knot nematode [ Meloidogyne incognita (Chitwood) Kofoid and White]. The southern root-knot nematode is a major pest of peppers in the United States, and all Habanero

Free access

C. Stevens, V. A. Khan, A. Y. Tang, C. K. Bonsi, and M. A. Wilson

A three year study involving solar heating of soil (soil solarization) with clear polyethylene mulch demonstrated for two years, control of root-knot nematodes (Meloidogyne incognita). The population of M. incognita was reduced >90% in the 0-30cm depth of solarized soil. The number of eggs per gram root recovered and the root gall index from `Georgia-Jet' sweetpotatoes were reduced (92-98%) by soil solarization. Growth and yield were enhanced in solarized soil. The beneficial effects of solarization was observed in the second year following two additional cropping cycles of collard greens and sweetpotatoes.

Full access

Susan L.F. Meyer

Two strains of the fungus Verticillium lecanii (A. Zimmermann) Viégas were studied as potential biocontrol agents for root-knot nematode (Meloidogyne incognita (Kofoid & White) Chitwood) on cantaloupe (Cucumis melo L.). For the study, pots were filled with soil that had been inoculated with M. incognita (inoculum was applied at two levels: 1000 and 5000 eggs/pot). Each fungus strain was applied individually by pouring an aqueous suspension (made from a wettable granule formulation) into the inoculated soil. Controls received water only. One cantaloupe seedling was then transplanted into each pot. Plants were grown for 55 days in the greenhouse, and then harvested and assessed for root and shoot growth and for nematode egg production. In pots inoculated with 1000 eggs/plant, neither fungus strain affected nematode egg numbers. At the 5000 eggs/plant inoculum level, both strains of the fungus suppressed egg numbers (counts were 28% and 31% less than water controls). Neither strain of V. lecanii affected the number of eggs embedded in root galls; the fungus suppressed nematode population numbers overall solely by affecting the number of eggs located outside of root tissues. Both fungus strains were also autoclaved and then applied to soil, to test for effects of nonviable fungus. In pots inoculated with 5000 eggs, application of one autoclaved strain resulted in a 35% suppression in egg numbers after 55 days, suggesting that the fungus produced a heat-stable substance deleterious to the nematode.

Free access

Richard L. Fery and Philip D. Dukes

Greenhouse experiments were conducted to determine the inheritance of the high level of southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] resistance exhibited by `Carolina Hot' cayenne pepper (Capsicum annuum L.) and to compare the genetic nature of this resistance to that exhibited by `Mississippi Nemaheart.' Evaluation of parental, F1, F2, and backcross generations of the cross `Mississippi Nemaheart' × `California Wonder' confirmed an earlier published report that the `Mississippi Nemaheart' resistance is conditioned by a single dominant gene. Evaluation of parental, F1, F2, and backcross generations of a cross between highly resistant and highly susceptible lines selected from a heterogeneous `Carolina Hot' population indicated that the resistance exhibited by `Carolina Hot' is conditioned by two genes, one dominant and one recessive. Evaluation of the parental and F2 populations of a cross between `Mississippi Nemaheart' and the highly resistant `Carolina Hot' line indicated that the dominant resistance gene in `Mississippi Nemaheart' is allelic to the dominant resistance gene in `Carolina Hot.' Comparison of the data that were collected on the parental lines in the latter cross demonstrated the superior nature of the resistance exhibited by `Carolina Hot.' The presence of the second resistance gene in `Carolina Hot' probably accounted for the higher level of resistance. The ease and reliability of evaluating plants for resistance to root-knot nematodes and the availability of a simply inherited source of resistance makes breeding for southern root-knot nematode resistance a viable objective in pepper breeding programs. This objective should be readily obtainable by the application of conventional plant breeding methodologies.

Free access

P. D. Dukes and Janice R. Bohac

There are four known physiological races of the southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood]. Races are designated I through 4 and their identifications are based soley on differential hosts. These race problems as related to breeding sweetpotato for resistance to attack by all races are reviewed and discussed. Data are presented showing the reactions of selected cultivar and breeding clones of sweetpotato to all four races. The reactions of races 1 and 3 are generally well—known. Races 2 and 4 apparently are spreading and becoming more numerous in the southern states where soybean and tobacco are grown. Comparative disease indices are presented showing that generally sweetpotatoes were less susceptible to races 2 and 4. However, there were some notable exceptions, for example, `Sulfur' and `Beauregard' were equally susceptible to all races. High resistances to attack by races 2 and 4 were found in `Sumor', `Nemagold', `Excel', W-241 and others.

Free access

J.A. Thies, J.D. Mueller, and R.L. Fery

The southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] is a serious pest of pepper (Capsicum annuum L.). Currently, methyl bromide is used for nematode control, but the pending withdrawal of this fumigant from the United States market has resulted in a need for effective alternative root-knot nematode management measures. We evaluated the effectiveness of resistance of `Carolina Cayenne' relative to the susceptible genotypes `Early Calwonder' and PA-136 in greenhouse, microplot, and field studies. In all tests, `Carolina Cayenne' exhibited exceptionally high resistance (minimal galling, minimal nematode reproduction, and no yield reduction) to M. incognita; `Early Calwonder' and PA-136 were highly susceptible. In a test conducted in a heavily infested field, `Carolina Cayenne' outyielded PA-136 by 339%. The exceptionally high resistance exhibited by `Carolina Cayenne' provides an alternative to methyl bromide and other fumigant nematicides for managing root-knot nematodes in pepper.

Free access

Judy A. Thies, Amnon Levi, Jennifer J. Ariss, and Richard L. Hassell

The Agriculture Research Service, U.S. Department of Agriculture, announces the release of ‘RKVL-318’, a novel germplasm line useful as a rootstock and as a genetic resource for enhancing resistance to root-knot nematodes (RKNs) in watermelon

Free access

J.C. Cervantes-Flores, G.C. Yencho, and E.L. Davis

Sweetpotato [Ipomoea batatas (L.) Lam.] genotypes were evaluated for resistance to North Carolina root-knot nematode populations: Meloidogyne arenaria (Neal) Chitwood races 1 and 2; M. incognita (Kofoid & White) Chitwood races 1, 2, 3, and 4; and M. javanica (Treub) Chitwood. Resistance screening was conducted using 150-cm3 Conetainers containing 3 sand: 1 soil mix. Nematode infection and reproduction were assessed as the number of egg masses produced by root-knot nematodes per root system. Host suitability for the root-knot nematode populations differed among the 27 sweetpotato genotypes studied. Five genotypes (`Beauregard', L86-33, PDM P6, `Porto Rico', and `Pelican Processor') were selected for further study based on their differential reaction to the different root-knot nematodes tested. Two African landraces (`Tanzania' and `Wagabolige') were also selected because they were resistant to all the nematode species tested. The host status was tested against the four original M. incognita races, and an additional eight populations belonging to four host races, but collected from different geographical regions. The virulence of root-knot nematode populations of the same host race varied among and within sweetpotato genotypes. `Beauregard', L86-33, and PDM P6 were hosts for all 12 M. incognita populations, but differences in the aggressiveness of the isolates were observed. `Porto Rico' and `Pelican Processor' had different reactions to the M. incognita populations, regardless of the host race. Several clones showed resistance to all M. incognita populations tested. These responses suggest that different genes could be involved in the resistance of sweetpotato to root-knot nematodes. The results also suggest that testing Meloidogyne populations against several different sweetpotato hosts may be useful in determining the pathotypes affecting sweetpotato.