Search Results

You are looking at 51 - 60 of 232 items for :

  • SPAD readings x
  • All content x
Clear All
Free access

Carolyn DeMoranville and Joan Davenport

The relationship between yield and applied N in cranberry has been investigated. Cultivar was important in determining optimum seasonal N rate. Sustained production for the hybrid `Stevens' required an annual seasonal total of N at up to 67 kg·ha–1, higher than was optimal for native selections `Early Black' and `Howes'. High N rates were associated with increased fruit rot and vine overgrowth. Optimum N rate varied within cultivar, likely due to variation in soil conditions, but soil N test results have not correlated well with subsequent yield in cranberry. Soil organic matter content can predict potential N release, but plant response must also be taken into account. To refine N rate recommendations, plant characteristics that might predict N requirements/status of cranberry were investigated. A standard of 0.9% to 1.1% N in August tissue has been established for cranberry. To find characteristics that could be used earlier, we surveyed 30 sites for percentage of N in tissue, length of new growth, SPAD chlorophyll meter ratings, fertilizer N use, and yield. Length of new growth could be used as an indicator of cranberry N status from June until bloom, being positively correlated with subsequent yield. The SPAD meter proved to be a viable alternative to in-season monitoring of tissue N during June and July. Readings below proposed standard values indicated the need for N fertilizer if vegetative growth was in the standard range. Thus, the easily determined factors of upright length and SPAD rating could be used to refine fertilizer rates during the active growing season, while tissue testing for percentage of N could be used as a “report card” on the fertilizer program at the end of the season.

Free access

Jason J. Griffin, Thomas G. Ranney, and D. Mason Pharr

Tolerance to high solar irradiation is an important aspect of stress tolerance for landscape plants, particularly for species native to understory conditions. The objective of this study was to evaluate differential tolerance to high solar irradiation and underlying photosynthetic characteristics of diverse taxa of Illicium L. grown under full sun or 50% shade. Eleven commercially available taxa of Illicium were evaluated for light tolerance by measuring light-saturated photosynthetic capacity (Amax), dark-adapted quantum efficiency of photosystem II (Fv/Fm), and relative chlorophyll content using a SPAD chlorophyll meter. Comparisons of Amax indicated that three of the 11 taxa (I. anisatum L., I. parviflorum Michx. ex Vent., and I. parviflorum `Forest Green') maintained similar rates of light-saturated carbon assimilation when grown in either shade or full sun. All other taxa experienced a significant reduction in Amax when grown in full sun. Chlorophyll fluorescence analysis demonstrated that Fv/Fm was similar between sun and shade plants for the same three taxa that were able to maintain Amax. These taxa appeared to experience less photoinhibition than the others and maintained greater maximum photochemical efficiency of absorbed light. SPAD readings were not significantly reduced in these three taxa either, whereas most other taxa experienced a significant reduction. In fact, SPAD readings were significantly higher in I. parviflorum `Forest Green' when grown under full sun, which also maintained the highest Amax of all the taxa. These results suggest that there is considerable variation in light tolerance among these taxa, with I. parviflorum `Forest Green' demonstrating superior tolerance to high light among the plants compared. A more rigorous examination of I. parviflorum `Forest Green' (high light tolerance) and I. floridanum Ellis (low-light tolerance) demonstrated that I. parviflorum `Forest Green' had a considerably higher Amax, a higher light saturation point, greater potential photosynthetic capacity, reduced susceptibility to photoinhibition as indicated by superior PSII efficiency following light exposure, greater capacity for thermal de-excitation as indicated by a higher rate of nonphotochemical quenching (NPQ) under full sun, greater apparent electron transport rate (ETR) at mid-day, and higher concentrations of the free-radical scavenger myo-inositol. All of these factors contribute potentially to a greater capacity to use light energy for carbon fixation while minimizing photodamage.

Open access

Youngsuk Lee, Hun Joong Kweon, Moo-Yong Park, and Dongyong Lee

to the measured chlorophyll meter readings. Therefore, a correlation between SPAD values and N content can provide useful information to diagnose the nutrition status of young apple trees. Arisoo is a new apple cultivar bred in Korea that has been

Free access

C.Y. Kuo and D.M. Yeh

Guzmania lingulata (L.) Mez. `Cherry' were grown in coco chips and fertigated with half-strength Hoagland solution containing various concentrations of boric acid. Excessive boron induced changes in growth, relative chlorophyll content, and leaf anatomy were investigated. Plants treated with 5 mg·L–1 or higher boric acid concentration had reduced SPAD-502 readings and Fv/Fm values and increased leaf necrosis in the lower leaves. Boron was distributed unevenly within a leaf, with the maximum concentration in the leaf tip. Increased necrotic length and new leaves with necrosis were evident where average whole leaf boron concentration was higher than 170 μg·g–1 on dry weight basis. More leaf growth and higher transpiration or stomatal conductance were recorded in plants under 40% (average 676 μmol·m–2·s–1 PPF at noon) than 76% (average 270 μmol·m–2·s–1 PPF at noon) shade. Excessive boron was not found to affect epidermal cells or water storage tissue, but caused browning and shriveling of the chlorenchyma cells.

Free access

Olivia M. Lenahan and Matthew D. Whiting

This article reports on the physiological effects and horticultural benefits of chemical blossom thinners on 9-year-old and 12-year-old `Bing'/`Gisela®5′ sweet cherry trees in 2004 and 2005, respectively. Chemical thinning agents were applied at 20% and 80% full bloom (FB) by air-blast sprayer and were comprised of: 2% ammonium thiosulphate (ATS), 4% vegetable oil emulsion (VOE), 2% fish oil + 2.5% lime sulfur (FOLS), 1% tergitol, and an untreated control. Leaf gas exchange, leaf SPAD meter readings, chlorophyll fluorescence parameters, fruit yield, and fruit quality were evaluated. FOLS, tergitol, VOE, and ATS suppressed leaf net CO2 exchange rate (NCER) by 33%, 30%, 28%, and 18%, respectively, over a variable length recovery period directly after 80% FB treatment. Leaf NCER recovered fully from every thinning treatment. Reductions in leaf NCER were unrelated to gS. VOE reduced estimated leaf chlorophyll content the greatest, suppressing overall levels by 11% for 23 days after treatment. All blossom thinners reduced constant fluorescence (Fo). No thinning agent reduced fruit set or yield in 2004. ATS, FOLS, and tergitol reduced fruit set in 2005. VOE was ineffective as a thinner yet exhibited significant leaf phytotoxicity. Among thinners, there was no relationship between inhibition of leaf NCER and thinning efficacy.

Free access

Jeff B. Million*, Thomas H. Yeager, and Joseph P. Albano

The influence of production practices on runoff from container nurseries was investigated in Spring 2003 (March to July) and Fall 2003 (August to January). Viburnum odoratissimum (Ker-Gawl.) liners were planted in 3.8-L containers with a 2 pine bark: 1 sand: 1 Canadian peat substrate and placed on 1.5 m2-platforms at one of two plant spacing densities: 16 or 32 plants/m2 [spaced to 16 plants/m2 after 13 weeks (spring) or 14 weeks (fall)]. Overhead sprinkler irrigation was applied daily (1 cm) and runoff collected weekly. Osmocote 18 N-2.6 P-10 K was surface-applied to each container (15 g) in the spring and surface-applied or incorporated in the fall. Cumulative runoff averaged 1240 L·m-1; in spring (19 weeks) and 1050 L·m-1; in fall (20 weeks), which represented 72% and 66% of applied irrigation plus rainfall, respectively. The lower density spacing resulted in a 19% increase in cumulative runoff in spring (1340 vs. 1130 L·m-1) but had no effect in fall (970 vs. 890 L·m-1). Weighted average ECwa of runoff decreased 10% (0.436 vs. 0.485 dS·m-1) and 12% (0.420 vs. 0.476 dS·m-1) with the lower density spacing in spring and fall, respectively. ECwa in fall was not affected by fertilizer method. Plant size index [(height + width)/2] was reduced 22% in both spring (38.7 vs. 49.7 cm) and fall (26.9 vs. 34.4 cm) when plants were grown at the lower density spacing throughout production. This reduction in plant size was attributed to container heat stress. Plant size was unaffected by fertilizer application method (fall) but fertilizer incorporation resulted in greener plants than surface-applied fertilizer (60 vs. 53 SPAD readings).

Free access

E. Fava, D. Janik, C. Madramootoo, and K.A. Stewart

Production of red bell peppers (Capsicum annuum L. cv. King Arthur) is relatively new to Quebec, and management techniques need to be further developed in terms of insect and disease control as well as fertigation techniques. The purpose of the experiment was to compare the fertigation of peppers using either the conventional method (weekly fertigation) or fertigation based on the readings of the SPAD 502 chlorophyll meter. The experiment compared the effects of these fertigation treatments, with respect to insects and diseases, on either a silver or black mulch. The study done in 1995, demonstrated that using the chlorophyll meter saved 28 kg N/ha compared to the weekly fertigated plants. However, this decrease did not affect the population of insects or the disease incidence on the plants. The main differences occurred between the black and silver mulch treatments for aphid populations. Plants on silver mulch had significantly lower numbers of aphids than the other treatments. Plants on black mulch also had low aphid population compared to plants grown on bare soil. The relationship between silver mulch and viruses or tarnished plant bug were not as apparent. However, the viral infections and tarnished plant bug populations on the plants tended to be lower than those on most of the black mulch treatments. Sunscald was not influenced by mulch or fertigation treatments. This may be partly attributed to the amount of leaf area. The number of fruit invaded by European corn borer was too low to draw any conclusions. Blossom end rot, sclerotinia, and bacterial spot were not present in the field in the 1995 season. The results from the 1996 season should further elucidate these results.

Free access

Shannon E. Beach*, Terri W. Starman, and H. Brent Pemberton

Bracteantha bracteata (Vent.) Anderb. & Haegi (bracteantha) is a vegetative annual produced as a 12.7-cm potted plant in 6 weeks of greenhouse production. A dense leaf canopy produced with a conventional constant-feed fertilization regime (300 mg·L-1 20N-4.4P-16.6K) caused increased disease pressure and lower leaf chlorosis during greenhouse production. During shelf life, lower leaves of plants con-tinued to become chlorotic. The objective was to decrease leaf area and prevent lower leaf chlorosis without affecting harvest time, plant quality or shelf life of two cultivars of three series of bracteantha. The first experiment was to reduce the rate of fertilizer two weeks prior to harvest. Treatments were no fertility reduction (300 mg/liter), 50% reduction (150 mg/liter), and 100% reduction (0 mg·L-1). At harvest, plants were evaluated for shelf life in a growth room at 21.1 ± 1.3 °C and 6 μmol·m-2·s-1 PPF. Five cultivars in the 100% fertility reduction treatment had decreased height and/or width index at harvest and three cultivars maintained higher postharvest quality ratings compared to the other treatments. Separately, the effect of the duration of fertilization was evaluated by terminating fertilization at weekly intervals (0-6 weeks) throughout production. Ceasing fertilization two to three weeks prior to harvest produced plants with lower leaf area without affecting flower number. In another experiment, thidiazuron (TDZ) as a foliar spray at 0, 0.1, 0.5, and 1.0 mg·L-1 was applied to decrease lower leaf yellowing. SPAD-502 chlorophyll meter readings of lower leaves were increased with 0.1 mg·L-1 TDZ treatment compared to the control. Phytotoxic symptoms occurred on plants receiving higher TDZ rates.

Free access

Ka Yeon Jeong, Claudio Pasian, and David Tay

Substrate pH of soilless media directly affects nutrient availability. Limited information about the effect of substrate pH on growth of begonia species (not cultivated hybrids) was found in the literature. The objective of this study was to evaluate the effect of substrate pH on the growth and quality of six begonia species grown from June to Aug. 2004. The targeted pH ranges (<4.5, 4.5∼5.0, 5.0∼5.5, 5.5∼6.0, 6.0∼6.5, 6.5∼7.0, and over 7.0) of the peat-based substrates were obtained by adding seven different amounts of dolomitic hydrated lime: 0, 1.0, 1.3, 1.6, 2.0, 2.4, and 2.6 kg·m3. Begonia albopicta, B. cucullata var. cucullata, B. echinosepala var. elongatifolia, B. holtonis, B. fuchsioides (red), and B. fuchsioides (pink), were propagated by stem cuttings, and then transplanted into plastic containers. This experiment was a factorial experiment arranged in a randomized complete-block design. The pH was monitored weekly using the pour-through method and adjusted accordingly by adding flowable lime or a mild sulfuric acid solution. The pH values were averaged for each treatment of each species. There were significant differences between species in the inflorescence number and SPAD readings, but no interaction between species and substrate pH was found. Stem length, leaf area, and dry weight of each plant were significantly affected by species and substrate pH. B. albopicta performed best at substrate pH of 5.6 and 6.0, showing no symptoms of phytotoxicity. B. cucullata, above substrate pH 6.0, and B. holtonis at pH 5.0 and 5.6 had the highest vegetative growth and plant quality. Plant mortality was observed for B. cucullata and B. fuchsioides (red) at pH below 4.4 and 5.3, respectively.

Open access

Russell Galanti, Alyssa Cho, Amjad Ahmad, and Javier Mollinedo

valued. These values are used in an equation to form an empirical relationship by the meter’s microprocessor. The reading output (SPAD) is in an arbitrary unit between 0 and 100 that is proportional to the amount of chlorophyll. The chlorophyll meter