Search Results

You are looking at 51 - 60 of 979 items for :

  • "weed controls" x
  • All content x
Clear All
Open access

S. Christopher Marble, Shawn T. Steed, Debalina Saha, and Yuvraj Khamare

Weed management in container plant production is challenging, primarily due to limited postemergence herbicide options and the consequential need for supplemental hand weeding ( Case et al., 2005 ). Currently, weed control in container nurseries is

Full access

Robert J. Richardson and Bernard H. Zandstra

length of rotation and sensitivity of some species (especially young transplants) to weed competition, adequate weed control continues to be an important issue facing the industry. Chemical weed control provides numerous benefits over no weed control for

Full access

Anil Shrestha, S. Kaan Kurtural, Matthew W. Fidelibus, Geoffrey Dervishian, and Srinivasa Konduru

efficacious, reliable, and economical ( Capps and Lanini, 2008 ). In recent years, some organic herbicides have been registered; however, their efficiency and cost-effectiveness in comparison with other weed control methods has not been directly compared

Free access

E. Jay Holcomb, Tracey L. Harpster, Robert D. Berghage, and Larry J. Kuhns

A set of studies was established in Summer 1998 to determine the tolerance of field-grown cut flower species to specific preemergence herbicides, the effectiveness of weed control by those materials, and to determine if productivity of cut flowers is affected either by the herbicides or by colored mulches. Pendimethalin provided excellent early season weed control, but poor late-season control. It consistently caused injury at 4 lb a.i./A and sometimes at the 2 lb a.i./A rate. Oryzalin provided good to excellent weed control, but slightly injured celosia and zinnia when applied at 4 lb a.i./A. Napropamide provided excellent early season weed control, but marginally acceptable weed control later in the season. Though napropamide caused some injury to celosia early in the season when applied at the high rate, no injury to any of the plants was observed later in the season. Prodiamine and trifluralin were the overall safest of the herbicides, but they provided the weakest weed control. OH-2 was very effective when placed on the soil surface, but was less effective when placed on an organic mulch. The organic mulch was designed to keep the OH-2 particles from splashing on to the crop plant and injuring the plants. OH-2 tended to be safer placed on a mulch than on the soil surface, but statice was slightly injured even when a mulch was used.

Free access

Joseph DeFrank and Charles R. Clement

Pejibaye (Bactris gasipaes Kunth, Palmae) is being evaluated for production of fresh heart of palm in Hawaii. Precocity, yields, and weed control were evaluated in response to woven black polypropylene mat (control), oryzalin, oxyfluorfen, and paraquat. Control plots attained 100% of plants harvested by 26 months, followed by oxyfluorfen (97.5%), oryzalin (77.5%), and paraquat (60%). Estimated heart of palm yields (3731 plants/ha) were similar with oxyfluorfen 1.2 kg a.i./ha (707 kg·ha–1), polypropylene mat (612 kg·ha–1), oxyfluorfen 0.6 kg a.i./ha (600 kg·ha–1), and oryzalin 4.5 kg a.i./ha (478 kg·ha–1). Based on precocity, yields, and weed control efficiency, the performance rating of these weed control treatments was mat ≈ oxyfluorfen > oryzalin > paraquat. Chemical names used: 4-(dipropylamino)-3,5-dinitrobenzenesulfonamide (oryzalin); 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene (oxyfluorfen); 1,1′-dimethyl-4-4′-bibyridinium ion (paraquat).

Free access

James E. Klett, David Staats, and Matt Rogoyski

During the 2004 season, preemergence herbicide was applied to 12 container-grown herbaceous perennials and woody plants and evaluated for weed control, phytotoxicity, and effect on plant growth. The herbicide and rates were: pendimethalin (Pendulum 2G) 908 g (label rate), 1816 g, and 3632 g/acre a.i. Herbicides were applied to lady's mantle (Alchemilla mollis), purple rock cress (Aubretia species), blue wild indigo (Baptisia australis), pink pussytoes (Antennaria dioica var. rosea), common sneezeweed (Helenium autumnale), redhot poker (Kniphofia uvaria), showy goldenrod (Solidago speciosa), heartleaf foamflower (Tiarella cordifolia), lavender (Lavendula angustifolia), blue flax (Linum perenne), catmint (Nepeta ×faassenii), and hen and chicks (Sempervivum tectorum). At 32 and 117 days after application, plants were evaluated for phytotoxicity. No phytotoxicity symptoms were apparent on any of the plants tested. Weed control was good in most cases with this herbicide but it did not control all weeds. Increasing the rates from 1× (label rate) did not significantly improve weed control.

Free access

S. Alan Walters, Bryan G. Young, and Ronald F. Krausz

A field study was conducted in 2002, 2003, and 2004 to evaluate various pre-emergence herbicides (ethafluralin & clomazone, ethafluralin & clomazone + halosulfuron, and ethafluralin & clomazone + imazamox) with or without a winter rye (Secale cereale L.) cover crop in tillage and no-tillage `Appalachian' pumpkin (Cucurbita pepo L.) production. All herbicides were applied within two days of seeding, and no injury was observed with any of the herbicides evaluated at any time during the three growing seasons. Early- and late-season control of all weed species [giant foxtail (Setaria faberi Herrm.), common cocklebur (Xanthium strumarium L.), redroot pigweed (Amaranthus retroflexus L.), and common waterhemp (Amaranthus rudis Sauer)] were highly correlated (0.47 ≤ r ≥ 0.86, P ≤ 0.01) with pumpkin yield and fruit size. The winter rye + no-tillage system provided greater weed control compared to the tillage systems and the no cover crop + no-tillage production system. Although winter rye alone had little influence on pumpkin yield, the no-tillage system improved pumpkin yield and fruit size compared to the tillage system. The two herbicide combinations (ethafluralin & clomazone + halosulfuron and ethafluralin & clomazone + imazamox) improved weed control and pumpkin yields compared to only ethafluralin & clomazone. Although this study indicated that the use of a high-residue winter rye cover crop in no-tillage pumpkin production will provide some weed control, the choice of pre-emergence herbicides is critical to maximize pumpkin productivity. No-tillage pumpkin production is feasible with proper herbicide use and timing, although current herbicide options will not provide optimal weed control.

Free access

James E. Klett and David Staats

During the 1999 season, preemergent herbicides were applied to container-grown herbaceous perennials and evaluated on the basis of weed control, phytotoxicity, and effect on plant growth. The herbicides and rates were: Oxyfluorfen + Pendimethalin (Scotts Ornamental Herbicide II) 3 and 6 lb ai/A, Napropamide (G) (Devrinol) 3 and 6 lb ai/A, Oryzalin (Surflan) 2 and 4 lb ai/A, Oxadiazon (Ronstar) 4 and 8 lb ai/A, Oxyfluorfen + Oryzalin (Rout) 3 and 6 lb ai/A, Prodiamine (Barricade) 0.65 and 1.3 lb ai/A, Pendimethalin (Scotts Ornamental Weedgrass Control) 2 and 4 lb ai/A, Trifluralin (Treflan) 4 and 8 lb ai/A. Herbicides were applied to Penstemon mexicali `Red Rocks'™, Osteospermum barberiae compactum `Purple Mountain'™, Gazania linearis `Colorado Gold'™, Agastache rupestris, Diascia integerrima `Coral Canyon'™, and Zauschneria arizonica. All plant and herbicide combinations did not result in any significant decline in plant growth. All herbicides provided good weed control.

Free access

Annamarie Pennuci

Novel and standard herbicides were applied alone, sequentially, or tank-mixed to determine weed control efficacies and tolerances in 15 species of field-grown herbaceous perennials. Autumn applications provided excellent but short-term broadleaf (BL) and annual grass (AG) weed control. Early spring applications were equally effective and of longer duration. Mid- and late spring treatments provided moderate to poor control of AG and poor control of winter perennial BL. Single applications of prodiamine provided season-long control of AG and of spring germinating BL. Greatest number of weed species were controlled by DCPA. Increased duration occurred with tank-mixes of DCPA + pendlimethalin, DCPA + quinclorac. Quinclorac provided excellent pre/post control of AG and some BL. Crop injury was minimized with directed applications. Isoxaben provided excellent preemergent control of BL. Tank-mixes improved AG control. Treatments applied prior to, or at the same time as mulch applications increased weed control and lessened drought stress. Treatments applied over mulch were less effective, suppressed fewer weed species, were of shortened duration, and increased the likelihood of crop injury.

Free access

Warren Roberts, Jim Shrefler, Jim Duthie, and Jonathan Edelson

A study was conducted in southeastern Oklahoma to determine treatments or combinations of treatments that provided the best weed control and crop yield for watermelon. `Allsweet' watermelons were grown with different combinations of mechanical and chemical weed control. Treatments included naptalam, clomazone, naptalam + clomazone, bensulide, naptalam + bensulide, napropamide, trifluralin, dcpa, ethalfluralin, sethoxydim, paraquat, glyphosate, cultivation, cultivation + hoeing, cultivation + paraquat, cultivation + glyphosate, and one treatment with no weed control. Glyphosate and paraquat were applied as wipe-on when weeds were taller than watermelons. The five treatments with greatest yields were (in descending order) cultivation + hoeing, trifluralin, cultivation + paraquat, cultivation, and dcpa. The treatments with lowest yield were the control, paraquat, glyphosate, and naptalam. A visual rating (0–10, 0 is poor, 10 is ideal) was taken about 5 weeks after seeding. Treatments with a visual rating of 6 or more were trifluralin (9.4), cultivation + hoeing (9.3), napropamide (9.3), cultivation + glyphosate (7.5), cultivation + paraquat (6.8), dcpa (6.7), and cultivation (6.5). With the exception of the cultivation + hoeing, all plots were weedy at harvest time. Suppression of selected weeds by a herbicide usually allowed rapid growth of the remaining weeds.