Search Results

You are looking at 51 - 60 of 210 items for :

  • "low chilling" x
  • All content x
Clear All
Free access

Amnon Erez

Most of the works evaluating dormancy completion relies on measuring the level of budbreaking or the time needed for buds to break in forcing conditions. In all cases, the evaluation of budbreak is limited to the initial stages of bud opening in both vegetative and floral buds. Very rarely the response of the new growth is determined. It is accepted that dormancy completion of the bud is of a qualitative nature of yes or no. This reasoning led to using excised branches that can not support normally a growing bud but may support the evaluation of the emerging buds. In practice, the effect of breaking bud dormancy is far reaching and has an impact on the development after budbreaking. Growth vigor is a characteristic tied to the rate of dormancy completion in a quantitative manner. After exposure to sufficient chilling growth is rapid and vigorous. When buds are exposed to warm winters, growth is sluggish and poor. Under certain conditions, budbreak may be high, but all vegetative buds will form rosettes. Likewise with floral buds, they may break satisfactorily but will not set normal fruit especially in stone fruit species. In a recent study of bud dormancy inheritance in apricots, budbreak showed a clear dominance of the low chilling characteristic; level of vegetative vigor showed a similar effect to the high and low chilling parents. Thus, two characteristics of dormancy completion should be considered. The first is the level of budbreak and the other is the vigor of the growing vegetative buds and the functionality of the flower buds, as both are affected by the conditions that induce dormancy completion.

Free access

K.G. Weis, S.M. Southwick, and Michael E. Rupert

Lack of pollen dispersal was noted in various sites and cultivars of sweet cherry (Prunus avium) following one of California's warmest recorded winters (≈550 hours @ 7°C in the Central Valley). `Bing' cherry is thought to require 850 to 880 hours for adequate budbreak and bloom development. Cross pollination is required by most sweet cherry cultivars for fruit set, including `Bing'. Complete anther dehiscence averaged 13% in `Bing' trees sampled, compared to 52% in `Rainier', 65% in `Brooks', 84.5% in `Burlat', 33% in Van, 23% in `Larian', and 86% in `Black Tartarian'. A range of degree of dehiscence from none to half-open was widely apparent, again by cultivar. Many partially dehiscent anthers did not shed pollen normally but appeared to have the mass of pollen completely adherent inside the pollen sacs. `Black Tartarian', `Larian', and `Burlat' shed pollen readily, however, pollen from dehiscent anthers of other cultivars generally appeared to stick together on the everted locule walls and required direct manipulation to be withdrawn from the pollen sac. Anther morphology ranged from normal size to half normal size, anthers appearing to be without pollen altogether that shriveled on drying, and lobes that were aborted. Pollen germination was low overall: 19% `Bing', 18% `Rainier', 20% `Brooks', 57% `Burlat', 14% `Van', 48% `Larian', and 48% `Black Tartarian'. Poor fruit set in low chill years is often attributed to lack of bloom overlap with pollenizers, however, inadequate chilling also may contribute to low fruit set by inhibiting anther and pollen growth and development. The implications of a critical chilling requirement for normal floral differentiation are that in cherry-growing areas where low chill years are common, pollen may not be viable or transferrable from pollenizers and female gametophytic development also may be impaired.

Free access

S. Pérez-González

The variability of species under local ecosystems, particularly in response to temperatures during endodormancy, permits adaptation of temperate fruit trees to subtropical climates. Information about the behavior of endodormant fruit trees and seeds is based on a narrow genetic base from higher latitudes. This work was conducted to generate information about responses of endodormant seeds from several subtropical peach (Prunus persica L.) genotypes, as a basis for breeding and selection in these regions. Samples of peach seeds were collected from genotypes originating at a range of altitudes in tropical-subtropical regions to evaluate their responses to different temperatures and lengths of stratification periods. When seeds were stratified at 7 °C, some genotypes with very low-chilling requirement registered a high percent germination in <40 days, and all accessions studied reached 95% germination before day 80. When seeds were stratified at warmer temperatures (10 and 14 °C), germination started earlier and was high at 10 °C for most accessions. Although seeds of some late-blooming accessions germinated earlier at 10 or 14 °C than at 7 °C, percent germination was lower and time-response curves were flatter. This contrasts with previous reports on genotypes with high-chilling requirement, where no germination was registered at 14 °C. These observations provide a background for screening seedlings for adaptation to local conditions, and suggest that endodormancy models should be based on information generated from local genotypes when applied in subtropical regions.

Free access

Miklos Faust, Dehua Liu, Merle M. Millard, and G.W. Stutte

Intact apple (Malus domestica Borkh.) buds were examined by magnetic resonance imaging (MRI). MRI did not excite water in unchilled apple buds and could not image it. When chilling was satisfied, images were produced. We interpret this difference to mean that water is in bound and/or structured form in dormant apple leaf buds before the chilling requirement is satisfied. Conversion of bound to free water occurred equally in the low-chilling-requirement cultivar Anna and the high-chillingrequirement cultivar Northern Spy only after 600 and 4000 hours of chilling, respectively. It appears that processes involved in satisfying chilling requirement are also converting water in buds from bound to free form. Absence of free water in dormant buds during the winter signifies endodormancy, whereas when the water is in free form, buds are ecodormant. Thidiazuron, a dormancy-breaking agent, applied to partially chilled buds is instrumental in converting water to the free form within 24 hours. Summer-dormant buds contain free water, and they could be classified only as paradormant. Based on proton profiles, ecodormant and paradormant buds cannot be distinguished but endodormant buds can be readily identified.

Free access

Sorkel A. Kadir and Edward L. Proebsting

Flower buds of 20 Prunus species showed quite different strategies to cope with low temperatures. Buds of most species deep supercooled. The two hardiest species, both from the subgenus Padus (P. padus L. and P. virginiana L.), did not supercool and survived -33C with no bud kill. Prunus serotina J.F. Ehrh., also in Padus, did supercool. Prunus nigra Ait., P. americana Marsh, P. fruticosa Pall., and P. besseyi L.H. Bailey had a low minimum hardiness level (MHL), small buds, and a low water content. Exotherms were no longer detectable from the buds of these species after 2 days at -7C and some buds survived -33C. Prunus triloba Lindl. and P. japonica Thunb. were similar to that group, but no buds survived -33C. Prunus davidiana (Carriere) Franch., P. avium L., and P. domestica L. had a relatively high MHL but hardened rapidly when the buds were frozen. Prunus persica (L.) Batsch., P. subhirtella Miq., P. dulcis (Mill) D. A. Webb, and P. emarginata (Dougl. ex Hook) Walp. deep supercooled, had large flower buds and a high MHL, and were killed in the Dec. 1990 freeze. Prunus salicina Lindl., P. hortulana L.H. Bailey, P. armeniaca L., and P. tomentosa Thunb. were in an intermediate group with a moderately low MHL and a moderate rate of hardiness increase while frozen. Prunus dulcis and P. davidiana had a low chilling requirement and bloomed early, whereas P. virginiana, P. fruticosa, P. nigra, and P. domestica had high chilling requirements and bloomed late.

Free access

Roberto Hauagge and James N. Cummins

Dormancy patterns throughout the season were studied in more than 90 apple (Malus ×domestica Borkh.) cultivars and related Malus spp. The seasonal apple bud dormancy pattern resembles a normal curve: it starts to intensify soon after bud formation and reaches maximum intensity by the time of leaf fall/senescence. Genotypes were grouped into three general classes based on maximum dormancy intensity. Maximum intensity of bud dormancy measured in cold winters is inversely related to adaptation to the subtropics. Low-chilling requirement (CR) cultivars have a shallow depth of dormancy with very little alteration throughout the year. High-CR cultivars have intense bud dormancy, the first stage of which can be induced by growing these cultivars at temperatures above 20C. Genotypes differed in their rates of dormancy dissipation. The efficiency of chilling unit (CU) accumulation to break dormancy was negatively correlated with CR, which indicates the importance of factors other than CU accumulation in terminating bud dormancy in low-CR cultivars. The inherent length of bud dormancy plays a major role in determining the time of budbreak in the spring. Deviations may be related to the genotypic efficiency in which chilling modifies dormancy and possibly the basal temperatures to which buds respond. Chill unit requirement and heat unit requirement are dependent factors. Heat requirement comparisons may be meaningless if the dormancy intensities of the genotypes are not taken into consideration.

Free access

Roberto Hauagge and James N. Cummins

In a study of chilling requirement in Malus, broad-sense heritability estimates for the length of vegetative bud dormancy in 43 clones growing under simulated subtropical winter conditions were 0.76 ± 0.04 in 1986 and 0.81 ± 0.04 in 1987. Narrow-sense heritability estimates were 0.66 ± 0.13 in 1986 and 0.69 ± 0.13 in 1987. Seedlings with low chilling requirements (CR) were not observed in crosses where both parents had high bud-chilling requirements. `Koningszuur' did not transmit its long CR to its seedlings. Open-pollinated (OP) seedling populations from the Malus × domestics Borkh. cultivars Anna, Dorsett Golden, Ein Shemer, Khashabi, Winter Banana, and Zabaoani, and the species and interspecific hybrids M. baccata L. DE#98, M. brevipes Rehd., M. ×robusta (Carr.) Rehd. DE#485, M. × robusta No. 5 (`R5'), M. rockii, M. turesi Rehd. PI 34143, and `Rosedale' had at least 5% of their descendants in the lower CR classes. In all but one instance, 50% or more of `Anna' descendants had low CR. Many of these seedlings were within a few classes of the extreme low CR. It is postulated that the low-CR character present in `Anna' is controlled by at least one major dominant gene and that minor genes interact to modulate its effects. Very low-CR cultivars have a shallow bud dormancy. This highly heritable component for low bud CR is related to a failure to develop a deep dormancy state, rather than to acceleration of the termination of the dormancy process.

Free access

Gerard Krewer, D. Scott NeSmith, and Ben Mullinix

Poor blueberry leaf development is a serious problem in medium and low chilling regions which leads to smaller, later ripening fruit and reduced bush vigor. Dormex (hydrogen cyanamide) and Promalin or Accel (6-benzyl adenine plus gibberellins A4 and A7) were used in the experiments. Dormex 1991-1995 trials with applications at the end of the dormancy period (February) looked promising but were not uniformly successful. In 1996, applications were made starting in mid-dormancy (early-mid January) about 6-8 weeks before normal bud break. Spring vegetative bud development was greatly accelerated with minimal advance in flower development. Mid-dormancy Dormex rates of 1.5% to 2% appear promising. Dormex application after bud break or at excessively high rates will kill flower buds, but has excellent potential as a bloom thinning agent for juvenile blueberry plants. Promalin or Accel applications post bloom significantly accelerated spring leaf development. Late summer applications of Promalin significantly increased fall growth and number of side shoots.

Free access

Dr. John R. Clark and P. Manjula Carter

The chilling requirements of the University of Arkansas blackberry cultivars Apache, Ouachita, and Prime-Jim*, and the primocane-fruiting selections APF-25, APF-27, APF-40, APF-42, APF-44, APF-46, APF-52, and APF-53 were investigated using stem cuttings from field-grown plants. A biophenometer was used to measure chilling (hours below 7 °C) in the field and 12-node cuttings of lateral shoots were taken from the cultivars every 100 hours up to 1000 hours below 7 °C. However, only 500 chilling hours had occurred at the time of this writing, and the response of budbreak to higher chilling levels could not be reported. The cuttings were placed in a mistchamber in the greenhouse with a daylength of 16 hours and air temperature of 26–29 °C. Percent budbreak was measured weekly. The cultivar × chilling interaction was significant (P = 0.05). `Apache' and `Ouachita' showed little or no budbreak up to 500 h, indicating a higher chilling requirement. The chilling requirement of Prime-Jim was determined to be between 300 h and 400 h, and that of the APF selections appeared to be between 300 h and 500 h. The chilling requirement of APF-53 could not be determined since budbreak was consistent at all levels of chilling up to 500 h. In general, the primocane-fruiting genotypes appeared to require less chilling than floricane-fruiting `Apache' and `Ouachita', and they would therefore be more suitable for low-chill locations.

Free access

Nicholi Vorsa and Richard Novy

Vaccinium darrowi (D) is a wild blueberry species with low chilling requirements for budbreak, and heat and drought tolerance. Breeding efforts to incorporate these desirable traits into cultivated blueberry (V. corymbosum) (C) would be facilitated with a better understanding of the genomic homology between the two species. An interspecific tetraploid hybrid (CCDD, 2n=4x=48) was used to evaluate genome homology and interspecific recombination. Pollen mother cells examined at diakinesis and early metaphase I exhibited an average of 4.6 chain bivalents, 11.4 ring bivalents, 1.0 chain quadrivalent, and 3.0 ring quadrivalents. This data most closely fits a chromosome pairing model in which there is a greater pairing affinity between homologues than homoeologues. An analysis of the inheritance of 14 RAPD markers unique to V. darrowi in 72 backcross progeny of the V. darrowi–corymbosum hybrid also supported the pairing model: Seven of the 14 markers deviated significantly from tetrasomic inheritance ratios, expected if chromosome pairing was totally random. On the basis of the cytogenetic and RAPD analyses, the genomes of V. darrowi and V. corymbosum are divergent from one another, with preferential pairing within genomes. This outcome suggests there may be difficulty in breaking undesirable linkages when introgressing desirable traits from V. darrowi to V. corymbosum.