Search Results

You are looking at 51 - 60 of 347 items for :

  • "day/night temperature" x
  • All content x
Clear All
Free access

Pauline Helen Kaufmann, Robert J. Joly, and P. Allen Hammer

The difference between night and day temperature (DIF = day - night temperature) has been shown to affect plant height. A positive DIF (+DIF), cooler night than day temperature, increases stem elongation while a negative DIF (- DIF), warmer night than day temperature, decreases stem elongation. The physiological mechanism underlying the growth response to DIF is not understood, however, and the effects of day/night temperature differentials on root permeability to water and root elongation rate have not been studied. The objective of this study was to describe how +DIF and -DIF temperature regimes affect leaf water relations, root water flux (Jv), root hydraulic conductivity (Lp), and root elongation rates of `Boaldi' chrysanthemum [Dendranthema ×grandiflora Kitam. `Boaldi' (syn. Chrysanthemum ×morifolium Ramat.)] plants over time. Leaf turgor pressure (ψp) was 0.1 to 0.2 MPa higher in plants grown in a +6 °C DIF environment throughout both the light and dark periods, relative to those in a -6 °C DIF environment. Jv differed markedly in roots of plants grown in +DIF vs. -DIF environments. Rhythmic diurnal patterns of Jv were observed in all DIF treatments, but the relative timing of flux minima and maxima differed among treatments. Plants grown in positive DIF regimes exhibited maximum root flux at the beginning of the light period, while those in negative DIF environments had maximum root flux during the first few hours of the dark period. Plants grown in +DIF had significantly higher Lp than -DIF plants. Plants grown in +DIF and -DIF environments showed differences in the diurnal rhythm of root elongation. During the dark period, +DIF plants exhibited minimal root elongation rates, while -DIF plants exhibited maximal rates. During the light period, the converse was observed. In -DIF temperature regimes, periods of rapid root elongation coincided with periods of high Jv. Results of this study suggest that negative DIF environments lead to leaf turgor reductions and markedly alter diurnal patterns of root elongation. These changes may, in turn, act to reduce stem elongation.

Open access

Elisa Solis-Toapanta, Paul R. Fisher, and Celina Gómez

Interest in hydroponic home gardening has increased in recent years. However, research is lacking on minimum inputs required to consistently produce fresh produce using small-scale hydroponic systems for noncommercial purposes. Our objectives were to 1) evaluate the effect of biweekly nutrient solution replacements (W) vs. biweekly fertilizer addition without a nutrient solution replacement (W/O) on final growth, yield, and nutrient uptake of hydroponic tomato (Solanum lycopersicum) plants grown in a greenhouse, and 2) characterize growth over time in a greenhouse or an indoor environment using W. For each environment, ‘Bush Goliath’ tomato plants were grown for 12 weeks in 6.5-gal hydroponic systems. The experiment was replicated twice over time. In the greenhouse, plants were exposed to the following day/night temperature, relative humidity (RH), and daily light integral (DLI) in 2018 (mean ± SD): 31 ± 6/22 ± 2 °C, 67% ± 8%, and 32.4 ± 7 mol·m‒2·d‒1; and in 2019: 28 ± 6/22 ± 3 °C, 68% ± 5%, and 27.7 ± 6 mol·m‒2·d‒1. For both experimental runs indoors, the day/night temperature, RH, and DLI were 21 ± 2 °C, 60% ± 4%, and 20 ± 2 mol·m‒2·d‒1 provided by broadband white light-emitting diode lamps. The W/O treatment resulted in a higher-than-desired electrical conductivity (EC) and total nutrient concentration by the end of the experiment. In addition, compared with the W treatment, W/O resulted in less leaf area, more shoot growth, less water uptake, and similar fruit number—but increased blossom-end-rot incidence, delayed fruit ripening, and lower fruit fresh weight. Nonetheless, the final concentration of all nutrients was almost completely depleted at week 12 under W, suggesting that the applied fertilizer concentration could be increased as fruiting occurs. Surprisingly, shoot biomass, leaf area, and leaf number followed a linear trend over time in both environments. Nonetheless, given the higher DLI and temperature, greenhouse-grown plants produced 4 to 5 kg more of fruit than those grown indoors, but fruit from plants grown indoors were unaffected by blossom-end-rot. Our findings indicate that recommendations for nutrient solution management strategies should consider specific crop needs, growing environments, and production goals by home gardeners.

Free access

John E. Erwin, Royal D. Heins, and James E. Faust

Nephrolepis exaltata (L.) Schott `Dallas Jewel' plants were grown for 92 days under 16 day/night temperature (DT/NT) regimes and two photoperiods for a total of 32 environments. Temperatures ranged from 15 to 30 ± 1.5C. Photoperiod was either 9 hours (short days) or 9 hours plus a 4-hour night interruption (long days) using incandescent lamps. Photoperiod had no significant effect on either morphology or development rate. Frond length and leaflet count per frond were highly correlated with the average daily temperature (ADT). Frond length increased from 9.3 to 21.9 cm and leaflet count increased from 21 to 42 leaflets per frond as ADT increased from 15 to 30C. Solon count and frond orientation were highly correlated with the weighted difference (WDIF) between DT and NT. The weighted difference between DT and NT was equal to: (DT × photoperiod) - (NT × scotoperiod). The scotoperiod was inclusive of the night interruption. Stolon count increased as the weighted NT increased relative to the weighted DT, i.e., as WDIF decreased. In contrast, frond angle relative to the soil surface, i.e., frond orientation, increased as WDIF increased. Frond unfolding rate and total plant dry weight increased as temperature increased to ≈ 25C, then decreased.

Free access

Lori A. Black, Terril A. Nell, and James E. Barrett

Dormant-budded `Gloria' azaleas (Rhododendron sp.) were used to observe the effect of forcing irradiance, temperature, and fertilization on postproduction performance after flower bud dormancy had been broken. Four experiments were conducted during forcing, the treatments for each experiment were: Expt. 1, three forcing irradiances (200,460, and 900 μmol·m-2·s-1) and three postproduction irradiances (4, 8, and 16 μmol·m-z·s-1); Expt. 2, three forcing irradiances (320, 560, and 1110 μmol·m-2s-l); Expt. 3, three controlled day/night temperatures (18/16C, 23/21C, and 29/27C); Expt. 4, fertilizer applied for 7, 14, or 28 days at either 150 or 300 mg N/liter (12% nitrate, 8% ammoniacal) 20N-4.8P-16K soluble fertilizer at every watering, control plants did not receive fertilizer. Days to harvest (time until plants had eight individual open flowers) was less at the high forcing irradiances and temperatures and when fertilizer was applied during forcing. Flower color was less intense at the low forcing irradiance levels, high temperatures, and when duration of fertilization was prolonged and concentration was high. There were more open flower inflorescences at week 2 of postproduction at high forcing irradiance levels, but their number was not affected by forcing temperature or fertilization. Postproduction longevity was shorter when forcing was at 29/27C (day/night) and when plants were fertilized for 28 days at 300 mg N/liter, but was not affected by forcing or postproduction irradiance.

Free access

Jong Suk Lee and Mark S. Roh

The effect of long-term storage of lily bulbs at -2 °C (frozen storage) and of high forcing temperatures on plant height and floral abnormalities was investigated with Oriental hybrid lilies from 1998 to 2000. `Acapulco' and `Simplon' bulbs were stored frozen at -2 °C for various lengths of time and were forced in fan- and pad-cooled greenhouses with temperatures ranging from 11 to 31 °C, depending on the season. The same cultivars were also forced in greenhouses and maintained year-round under refrigerated air conditioning with day/night temperatures of 16/15.5 °C or 18.5/18 °C. Floral development immediately after storage and at different intervals thereafter was observed by scanning electron microscopy (SEM). The prolonged frozen storage reduced the number of flowers. High greenhouse forcing temperatures during summer significantly accelerated flowering, resulted in short plants, and increased the number of abnormal flowers. Forcing at a low temperature (15.5 °C) after planting the frozen stored bulbs resulted in longer cut stems than those forced at 25 °C for 30 days after potting. Bulbs can be stored up to 9 months and still produce high-quality Oriental hybrid lilies.

Free access

D. G. Mortley, C. K. Bonsi, W. A. Hill, P. A. Loretan, C. E. Morris, A. A. Trotman, and P. P. David

Growth chamber studies were conducted to determine growth responses of sweetpotato [Ipomoea batatas (L.) Lam) to differing photoperiods (PP) when grown by use of NFT. Four vine cuttings (15 cm length) of GA Jet and TI-155 were grown for 120 days at 12/12, 15/9, 18/6, and 21/3 light/dark PP. Irradiance averaged 427 umol m-2 s-1, with day/night temperatures of 28/22C and 70% RH. A modified half Hoagland's solution was used. Number of storage roots/plant, and storage root fresh and dry weights for GA Jet increased as PP increased from 12 to 21 h, while storage root fresh and dry weights for TI-155 increased up to 18 h PP but declined at 21 h PP. Storage root number/plant for TI-155 declined at 15 h PP but was higher at both 18 and 21 h PP. Highest foliage dry weight for GA Jet was obtained at 21 h PP while that for TI-155 was obtained at 18 h PP. Leaf area index (LAI) for GA Jet increased with increased PP, while LAI for TI-155 increased with increased PP up to 18 h then declined at 21 h PP.

Free access

Scott Aker and William Healy

Alstroemeria `Regina' and A. `Orchid' Linn. plants were grown in rhizotrons to facilitate non-destructive observation of shoot, rhizome, and storage root growth. In plants grown at 21/11 C or 21/21 C day/night temperatures under either 8 hr night interruption or an 8 hour short days, storage root growth was favored by cool (11 C) night temperatures and long days. The seasonal patterns of storage root and rhizome growth were inversely related to the seasonal pattern of shoot growth. Growth of shoots and rhizomes followed a cyclic pattern. The cycles of shoot and rhizome growth were in phase with each other until the plants resumed vegetative growth due to high soil temperature. At this point, the cycles of shoot and rhizome growth were shifted out of phase with each other. Thinning shoots by 60% resulted in delay and damping out of the peak of storage root growth; the cyclic growth of storage roots was disrupted when plants were thinned by 60% such that the cycles of active storage root growth were delayed by 1 week.

Free access

Scott Aker and William Healy

Alstroemeria `Regina' and A. `Orchid' Linn. plants were grown in rhizotrons to facilitate non-destructive observation of shoot, rhizome, and storage root growth. In plants grown at 21/11 C or 21/21 C day/night temperatures under either 8 hr night interruption or an 8 hour short days, storage root growth was favored by cool (11 C) night temperatures and long days. The seasonal patterns of storage root and rhizome growth were inversely related to the seasonal pattern of shoot growth. Growth of shoots and rhizomes followed a cyclic pattern. The cycles of shoot and rhizome growth were in phase with each other until the plants resumed vegetative growth due to high soil temperature. At this point, the cycles of shoot and rhizome growth were shifted out of phase with each other. Thinning shoots by 60% resulted in delay and damping out of the peak of storage root growth; the cyclic growth of storage roots was disrupted when plants were thinned by 60% such that the cycles of active storage root growth were delayed by 1 week.

Free access

Chris A. Martin and Richard L. Garcia

Eureka lemon (Cirrus limon L. `Eureka') trees were grown in factorial combinations of low (L) or high (H) temperature [day/night temperature regimens of 29.4C/21.1C or 40.5C/32.2C] and ambient (C380) or enriched (C680) atmospheric CO2 concentrations [380 umol mol-1 or 680 umol mol-1, respectively]. After growth under these conditions for 5 months, morning and afternoon leaf carbon assimilation measurements were made with a temperature-controlled cuvette attached to a portable photosynthesis system. Net (P3) and gross (Pg) photosynthesis were measured at 30 umol mol-1 intervals as leaves were exposed to cuvette CO2 drawndowns from 700 to 300 umol mol-1 at 21% and 1% O2, respectively. Photorespiration (Rp) was estimated as the difference between Pg and Pn. Generally, Rp increased as cuvette CO2 decreased. Morning and afternoon Rp of leaves adapted to LC380 conditions were similar. Morning Rp was higher than afternoon Rp for leaves adapted to LC680 conditions. Morning Rp was higher for leaves adapted to HC380 conditions as compared to HC680-adapted leaves. In contrast, afternoon Rp was higher for leaves adapted to HC680 conditions than for H&,-adapted leaves.

Free access

C. Chun and C.A. Mitchell

For biomass production in a space-deployed Controlled Ecological Life-Support System (CELSS), efficient usage of limited resources such as light, CO2, growth area, and labor is more consequential than for biomass production on Earth. Light will be one of the most energy-consuming environmental factors to provide in CELSS. Therefore, development of an energy-efficient lighting-control strategy would make a great contribution to the sustainability of CELSS. Lettuce (Latuca sativa L.) was used as a model salad crop for the development of new control methods due to its rapid growth rate and high harvest index (≥80%). Lettuce seeds were sown and plants were cultured hydroponically in the Minitron II plant growth/canopy gas-exchange system. Canopy net photosynthetic rates (μmol CO2/m2 per s) were measured under a specific photosynthetic photon flux (PPF) and analyzed to decide the PPF of the next 1-h interval. Appropriate PPFs were provided on the initial day and during the first 1-h interval of each 20-h photoperiod. Plant-growth indices, crop yield rates (g/m2 per day), and power consumption rates were determined for different lighting strategies to identify the best compromise between energy cost and yield. Day/night temperature and CO2 concentration were maintained at 25/25C and 1100/400 μl·liter–1, respectively. This research is supported by NASA grant NAGW-2329.