Search Results

You are looking at 51 - 60 of 106 items for :

  • "acetaldehyde" x
  • All content x
Clear All
Free access

Dangyang Ke, Lili Zhou, and Adel A. Kader

`Chandler' strawberries (Fragaria ananassa Duck.) were kept in air, 0.25% O2, 21% O2 + 50% CO2, or 0.25 O2 + 50% CO2 (balance N2) at 5C for 1 to 7 days to study the effects of controlled atmospheres (CAs) on volatiles and fermentation enzymes. Concentrations of acetaldehyde, ethanol, ethyl acetate, and ethyl butyrate were greatly increased, while concentrations of isopropyl acetate, propyl acetate, and butyl acetate were reduced by the three CA treatments compared to those of air-control fruit. The CA treatments enhanced activities of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) but slightly decreased activity of alcohol acetyltransferase (AAT). The results indicate that the enhanced PDC and ADH activities by CA treatments cause ethanol accumulation, which in turn drives the biosynthesis of ethyl esters. The increased ethanol concentration also competes with other alcohols for carboxyl groups for esterification reactions. The reduced AAT activity and limited availability of carboxyl groups due to ethanol competition decrease production of other acetate esters.

Free access

Salah E. Youssef and Elizabeth J. Mitcham

Peaches and apricots were obtained at harvest. One-half were inoculated with the brown rot organism (Monilinia fructicola) and incubated overnight before immersion in 52C water for 2.5 and 2 minutes, respectively. Fruit were placed in storage at SC in air, 2% O2 and 15% CO2, or 17% O2 and 15% CO2 for 5 or 15 days before ripening at 20C. For peach, controlled atmosphere (CA) had no influence on decay while hot water significantly reduced decay incidence and severity. For apricot, after 15 days cold storage, both hot water and controlled atmosphere storage reduced decay incidence and severity. CA with 2% O2 and 15% CO2 controlled decay better than 17% O2 and 15% CO2. Growth and sporulation of Monilinia fructicola in air and CA was also evaluated in vitro. The combination of heat and CA controlled decay better than either treatment alone. The hot water treatment resulted in minor surface injury on peaches while apricots were not injured. Fruit were evaluated after storage for firmness, soluble solids, and titratable acidity. Accumulation of ethanol and acetaldehyde as a result of CA storage was monitored.

Free access

Yong Seo Park, Clara Pelayo, Betty Hess-Pierce, and Adel A. Kader

`Shinko' and `Shinsui' Asian pears were kept in air, 2 kPa O2, 2 kPa O2 + 2.5 kPa CO2, and 2 kPa O2 + 5 kPa CO2 (balance N2 in each treatment) at 0 °C or 5 °C for up to 24 weeks. The three CA treatments reduced respiration (O2 consumption) and ethylene production rates relative to air control pears; these rates were higher at 5 °C than at 0 °C and higher for `Shinsui' than for `Shinko' pears. While `Shinsui' pears had a climacteric pattern of respiration and ethylene production rates, `Shinko' pears produced very small quantities of ethylene and exhibited a non-climacteric respiratory pattern. `Shinko' pears had a much longer postharvest life than `Shinsui' pears (24 weeks vs. 12 weeks at 0 °C). CA treatments had a greater effect on delaying deterioration of `Shinsui' than `Shinko' pears, which were more sensitive to CO2 injury and associated accumulation of fermentative metabolites (acetaldehyde, ethanol, ethyl acetate). `Shinko' pears did not benefit from CA storage and were best kept in air at 0 °C. An atmosphere of 2 kPa O2 with or without up to 5 kPa CO2 delayed flesh breakdown of `Shinsui' pears during storage 0 °C.

Free access

E.A. Baldwin, T.M.M. Malundo, R. Bender, and J.K. Brecht

Mango fruit, cv. Tommy Atkins, were harvested from two grove sites in south Florida at mature green (MG) and tree ripe (TR) maturities. The fruit were either coated with one of two coatings (NS = Nature Seal® 4000, a polysaccharide coating, or CW = carnauba wax) or left uncoated (control) and stored in humidified air or held in a controlled atmosphere (CA = 5% O2 plus 25% CO2) at 12 °C for 21 days followed by 2 days in air at 20 °C. There were 12 fruit for each treatment/maturity stage combination replicated by grove site. After storage, the pulp was homogenized for later consumer or descriptive panel analysis. Measurements for total soluble solids (SS), pH, titratable acidity (TA), and flavor volatile compounds were also made. TR-harvested fruit were sweeter and generally more aromatic than MG-fruit as determined by sensory and/or chemical analysis. NS-coated fruit were more sour, bitter, and astringent compared to controls and CA-treated fruit. NS-coated fruit received lower overall consumer scores than CW-coated fruit, but were not different from controls or CA-treated fruit. This was reflected also in descriptive panel ratings. There were no differences based on storage treatment for SS, pH, or TA; however, NS-coated fruit were higher in acetaldehyde, methanol and ethanol compared to control or CA-treated fruit. Correlation and regression analysis showed significant relationships between sensory and chemical data.

Free access

A.A. Kader, D. Ke, M. Mateos, and E. Yahia

Fruits of `Bartlett' pear (Pyrus communis L.) at green (preclimacteric) and yellow (postclimacteric) stages were kept in 0.25% O2 (balance N2), 80% CO2 (balance O2), or 0.25% O2 + 80% CO2 (balance N2) for 1, 2, or 3 days followed by transfer to air at 20C for 3 days to study the effects of these controlled atmosphere (CA) treatments on anaerobic products and enzymes. All the three CA treatments caused greater accumulation of ethanol, acetaldehyde, and ethyl acetate than the air control. The postclimacteric pears were more sensitive to CA treatments as indicated by occurrence of skin browning, enhanced activity of pyruvate decarboxylase, and higher concentrations of the anaerobic volatiles. For the preclimacteric pears, the 0.25% O2 treatment dramatically increased alcohol dehydrogenase (ADH) activity, which was associated with the induction of one ADH isozyme. Exposure of preclimacteric pears to 80% CO2 slightly increased ADH activity while treatment with 0.25% O2 + 80% CO2 resulted in lower AD11 activity than 0.25% O2 alone.

Free access

John C. Beaulieu, Edna Pesis, and Mikal E. Saltveit

An in vitro assay was used to determine the effect of AA and pH on the enzymatic and nonenzymatic production of ethylene (C2H4) from ACC. We were interested in the effect of AA on C2H4 production from ACC because aldehydes, primarily AA, can accumulate in tissue as the result of ripening, storage under modified atmospheres, packaging, and stress. Using crude extracts of ACC oxidase from tomato (Lycopersicon esculentum Mill. `Castlemart') and apple (Malus ×domestica Borkh. `Golden delicious'), C2H4 production from ACC was shown to increase in response to an increase in pH above 7.2 and inclusion of 0.2 to 2 mm AA. Nonenzymatic C2H4 production from ACC also increased linearly with increasing AA concentrations in all the buffers tested. Removal of ascorbate or O2 suppressed AA-induced nonenzymatic C2H4 production. Nonenzymatic AA-induced production of C2H4 from ACC appeared to be an ascorbate dependent oxidation, which was augmented by O2 and was sensitive to minor pH fluctuation. The nonenzymatic AA-stimulated conversion of AEC to 1-butene lacked stereospecificity. Formaldehyde and propionaldehyde also stimulated C2H4 production from ACC. These data indicate that ACC oxidase assays or C2H4 measurements assessing physiological status can be seriously affected by the presence of aldehydes, such as AA. Chemical names used: AA, acetaldehyde; ACC, 1-aminocyclopropane-1-carboxylic acid; AEC, 1-amino-2-ethylcyclopropanecarboxylic acid; ADH, alcohol dehydrogenase; EtOH, ethanol.

Free access

Yiping Gong, Peter M.A. Toivonen, O.L. Lau, and Paul A. Wiersma

Apple fruits (Malus domestica Borkh. cv. Braeburn) harvested from two orchards (A and B) on the same day were stored in air or pretreated in air for 0, 2 (2dCA) or 4 weeks (4dCA) before moving into controlled atmosphere (CA) storage with 1.5% O2 + 5% CO2. During storage at 1 °C for 9 weeks in air and/or CA, changes of pyruvate decarboxylase (PDC) activity, alcohol dehydrogenase (ADH) activity, acetaldehyde (AA) and ethanol (EtOH) concentrations in flesh tissue were assayed in addition to the incidence of Braeburn browning disorder (BBD). Immediate introduction to CA conditions induced the development of BBD with the highest incidence 62.2%, however delaying application of CA for 2 and 4 weeks reduced the incidence of BBD to 38.5% and 27.0%. The development of disorder in grower B was less than in grower A. 2dCA and 4dCA treatments did not influence PDC activity compared with treatment of CA. However, ADH activity and the accumulation of AA and EtOH in treatments of 2dCA and 4dCA were markedly lower than those in CA. The accumulation of AA in grower B was lower than grower A. The results of this study suggest that the delayed application of CA reduced BBD and this may be due to reduced anaerobic metabolism of fruits in the delayed CA.

Free access

E.A. Baldwin, M.O. Nisperos-Carriedo, and M.G. Moshonas

Tomato (Lycopersicon esculentum Mill.) fruit, cvs. Sunny and Solar Set, were analyzed at five ripening stages for ethylene and CO2 production. Homogenates from the same fruit were prepared for determination of color, flavor volatiles, sugars, and organic acids. Changes in the levels of these compounds were compared to the pattern of climacteric ethylene production. Of the flavor volatiles measured, only eugenol decreased during ripening in both cultivars and 1-penten-3-one in `Sunny' tomatoes. Ethanol and trans-2-trans- 4-decadienal levels showed no change or fluctuated as the fruit ripened while all other volatiles measured (cis- 3-hexenol, acetaldehyde, cis- 3-hexenal, trans-2- hexenal, hexenal acetone, 6-methyl-5 -hepten-2-one, geranylacetone, and 2-isobutylthiazole) increased in concentration, peaking in the turning, pink, or red stage of maturity. Synthesis of some volatile compounds occurred simultaneously with that of climacteric ethylene, CO2 and lycopene production. `Solar Set' fruit exhibited higher levels than `Sunny' of all flavor components except ethanol and hexanal in the red stage. There were no differences in organic acid levels between the cultivars; however, `Solar Set' had higher levels of sugars. Changes in acid and sugar levels showed no temporal relationship to climacteric ethylene or CO2 production.

Free access

Andrés R. Schwember and Kent J. Bradford

Seed priming (controlled hydration followed by drying) is used to alleviate high temperature inhibition of germination and improve seedling emergence of lettuce (Lactuca sativa L.) and other species. However, seed priming can also reduce the longevity of seeds during dry storage. Alternative drying methods [i.e., slow drying or moisture content reduction (MCR) before drying] can extend seed longevity compared to conventional rapid drying procedures after priming. Three postpriming drying treatments were tested on `Conquistador' and `Genecorp Green' lettuce seeds: rapid drying, slow drying and MCR (10% fresh weight loss, then held at 100% relative humidity (RH) for 6 hours, followed by rapid drying). The effects of the postpriming treatments on seed quality and longevity were compared based upon standard germination tests, germination rates, thermogradient table tests, controlled deterioration (CD) tests, and headspace volatiles analysis. The latter may be correlated with seed longevity as release of volatiles (e.g., acetaldehyde, ethanol) is associated with lipid peroxidation. While neither slow drying nor MCR before drying restored lettuce seed longevity to that of the control (not primed) seeds, the MCR method generally gave better results in both cultivars compared to rapid drying. Among the CD test conditions used, 50 °C and 75% RH gave the most consistent results for estimating potential longevity. Headspace volatile emissions from both control and primed lettuce seeds were very low and were not well correlated with seed longevity. Alternative postpriming drying regimes can extend seed longevity while retaining the beneficial effects of priming.

Free access

Dangyang Ke and Adel A. Kader

Fruits of peach (Prunus persica L., cv. `Fairtime') and plum (Prunus domestica L., cv. `Angeleno') were kept in air and in 0.25% or 0.02% O2 at 0, 5, or 10°C for 3 to 40 days to study the effects of temperatures and insecticidal low O2 atmospheres on their physiological responses and quality attributes. Exposure to low O2 atmospheres reduced respiration and ethylene production rates of the stone fruits. The low O2 treatments retarded color change and flesh softening of plums and maintained acidity of peaches. Exposure to the low O2 atmospheres also delayed incidence and reduced severity of internal breakdown (chilling injury) and decay of the peaches at 5°C and, therefore, maintained both external and internal appearance qualities of the fruits longer than those kept in air. The most important limiting factor for fruit tolerance to insecticidal low O2 atmospheres was development of alcoholic off-flavor which was associated with accumulation of ethanol and acetaldehyde in the fruits. The peaches and plums could tolerate exposures to the low O2 atmospheres for 9 to 40 days, depending on the temperature and O2 level used. These results suggest that stone fruits are quite tolerant to insecticidal low O2 atmospheres.