Search Results

You are looking at 41 - 50 of 2,940 items for :

  • cover crops x
  • All content x
Clear All
Open access

Alyssa R. Tarrant, Daniel C. Brainard, and Zachary D. Hayden

., 2004 ; Rice et al., 2004 ). Growing a cover crop as a living mulch between plastic-mulched beds during cash crop production has the potential to mitigate these soil and nutrient conservation challenges, in addition to providing other services. These

Full access

Sanjeev K. Bangarwa, Jason K. Norsworthy, and Edward E. Gbur

by combining two or more alternatives that can provide effective weed control in bell pepper. One potential nonchemical tactic is the inclusion of cover crops belonging to the mustard family (Brassicaceae) in bell pepper production systems. The weed

Full access

Sanjeev K. Bangarwa, Jason K. Norsworthy, Ronald L. Rainey, and Edward E. Gbur

crucifer cover crop tissues before planting a commercial crop may reduce early-season weed competition in tomato. Although the use of crucifer cover crops for weed management appears promising, the magnitude of weed suppression is either marginal or

Free access

Wayne C. Porter

Rye, wheat, hairy vetch, ryegrass, and Austrian winterpea were evaluated for effects on weed control and sweetpotato production. Sweetpotatoes were transplanted into these cover crops after the cover crops had been killed with glyphosate and mowed. One-half of each plot was treated with clomazone herbicide and one-half was not treated. Plots with rye residues contained fewer goosegrass, rice flatsedge, ground cherry, and smooth pigweed plants than other cover crop plots. Sweetpotato plant vigor was greatest in the rye plots. Goosegrass, crabgrass, groundcherry, and eclipta were controlled in cover crop plots treated with clomazone. Sweetpotato plant vigor was better in the plots treated with clomazone than in plots with a cover crop only. Highest yields of no. 1 grade and total marketable sweetpotatoes were in rye and ryegrass cover crop plots, with or without clomazone. Sweetpotatoes grown in Austrian winterpea plots without clomazone produced the lowest yields. There was an increase in yield of sweetpotatoes in all cover crop plots treated with clomazone.

Full access

Lavesta C. Hand, Wheeler G. Foshee III, Tyler A. Monday, Daniel E. Wells, and Dennis P. Delaney

( Brandenberger et al., 2005 ). Cover crops have been used in numerous cropping systems to improve weed control. In addition to providing weed suppression, benefits of growing a cover crop include improved soil structure, preservation of soil moisture, erosion

Free access

N.G. Creamer, M.A. Bennett, J. Cardina, and E.E. Regnier

Little research has been conducted to quantify allelopathic suppression of weeds in the field. The objectives of this study were to develop an adequate control for separating physical from allelochemical effects, use the control to quantify allelochemical suppression in the field, and determine whether a mixture of cover crops would provide a broader spectrum of weed control than single species. Hairy vetch, rye, crimson clover, and barley were cut into 5-cm pieces, shaken in distilled water (pH 6) to leach allelochemicals, and redried. A seed germination bioassay confirmed that leached cover crops were nontoxic to germinating seeds. Physical suppression of Eastern black nightshade by the four cover crop species occurred in the field study, as did allelochemical suppression by crimson clover. Only rye physically suppressed yellow foxtail, and none of the cover crops suppressed yellow foxtail allelochemically.

Free access

Michael J. Costello

erosion. It has become common in California for practitioners to maintain vineyard floor vegetation for at least part of the year either by managing the resident vegetation or a planted cover crop ( Elmore et al., 1998 ). The typical method of cover

Free access

Francis X. Mangan, Stephen J. Herbert, and Mary Jane Else

Cover crops have been used in agricultural systems for thousands of years and are still an important part of vegetable production in the Northeast. Winter rye (Secale cereale) is by far the dominant cover crop species on conventional vegetable farms in the New England states. It is use is primarily for erosion control. Winter rye is popular since it is cheap, easy to establish, can overwinter in the harsh winters of northern New England, is efficient in “capturing” excess nitrogen at the end of the cash crop season, and it can produce substantial amounts of organic matter in the spring. As many positive attributes that winter rye has, it is important to be aware of many of the other potential cover crop species that are available to us. For example, many conventional growers are exploring the use of leguminous cover crops as an alternative to chemical nitrogen fertilizers which are more readily leached and are only going to get more expensive. Cover crops can also be seeded and managed in innovative ways to suppress weeds and other pests, add organic matter and conserve soil moisture.

Full access

Mary C. Akemo, Mark A. Bennett, and Emilie E. Regnier

Pure and biculture stands of rye `Wheeler' (Secale cereale L.) and field pea (Pisum sativum L.) were established and killed for mulch in Spring 1996, 1997, and 1998, in Columbus, Ohio. Treatments were five rye to pea proportions, each with a high, medium, and low seeding rate. Their effects on tomato (Lycopersicon esculentum Mill.) growth and yield were compared with those of a weedy check; a tilled, nonweeded check; and a tilled, hand-weeded check. Tomato tissue and soil were sampled for nutrient analysis. Number of leaves, branching, height, leaf area, dry weight, rate of flowering and fruit set, and fruit yield of tomato plants varied directly with the proportion of pea in the cover crop and decreased with reduced cover crop seeding rates. In 1997, yields of tomato were as high as 50 MT·ha-1 in the 1 rye: 3 pea cover crop; yield was poorest in the weedy check (0.02 MT·ha-1 in 1996). Most of the cover-cropped plots produced better yields than did the conventionally weeded check. No consistent relationship between levels of macronutrients in tomato leaf and soil samples and the cover crop treatments was established. Spring-sown rye + pea bicultures (with a higher ratio of pea) have a potential for use in tomato production.

Free access

Mary C. Akemo, Mark A. Bennett, and Emilie E. Regnier

Pure and biculture stands of rye `Wheeler' (Secale cereale L.) and field pea (Pisum sativum L.) were established and killed for mulch in Spring 1996, 1997, and 1998, in Columbus, Ohio. Treatments were five rye to pea proportions, each with a high, medium, and low seeding rate. Their effects on tomato (Lycopersicon esculentum Mill.) growth and yield were compared with those of a weedy check; a tilled, nonweeded check; and a tilled, hand-weeded check. Tomato tissue and soil were sampled for nutrient analysis. Number of leaves, branching, height, leaf area, dry weight, rate of flowering and fruit set, and fruit yield of tomato plants varied directly with the proportion of pea in the cover crop and decreased with reduced cover crop seeding rates. In 1997, yields of tomato were as high as 50 MT·ha–1 in the 1 rye: 3 pea cover crop; yield was poorest in the weedy check (0.02 MT·ha–1 in 1996). Most of the cover-cropped plots produced better yields than did the conventionally weeded check. No consistent relationship between levels of macro-nutrients in tomato leaf and soil samples and the cover crop treatments was established. Spring-sown rye + pea bicultures (with a higher ratio of pea) have a potential for use in tomato production.