Search Results

You are looking at 41 - 50 of 548 items for :

  • All content x
Clear All
Full access

Wansang Lim, Kenneth W. Mudge, and Jin Wook Lee

We determined the effect of moderate water stress on the growth of american ginseng (Panax quinquefolium), and on concentrations of six major ginsenosides (Rg1, Re, Rb1, Rc, Rb2, and Rd). Two-year-old “rootlets” (dormant rhizome and storage root) were cultivated in pots, in a cool greenhouse (18.3 ± 2 °C). Pots were watered either every 5 days (control) or every 10 days (stress), repeatedly for 8 days. Soil volumetric water content was measured during the last 10 days of the experiment for both treatments. Leaf water potential, measured on the last day of the experiment, was -0.43 MPa for the control and -0.83 MPa for the stress treatment. Drought stress did not affect above-ground shoot or root dry weight. Initial rootlet fresh weight (covariate) had a significant effect on the concentration of ginsenosides Re, Rb1, Rc, and Rb2. Drought stress increased the concentration of ginsenosides Re, Rb1, and total ginsenoside concentration.

Free access

Mark G. Lefsrud, Dean A. Kopsell, David E. Kopsell, and Joanne Curran-Celentano

Crop plants are adversely affected by a variety of environmental factors, with air temperature being one of the most influential. Plants have developed a number of methods in the adaptation to air temperature variations. However, there is limited research to determine what impact air temperature has on the production of secondary plant compounds, such as carotenoid pigments. Kale (Brassica oleracea L.) and spinach (Spinacia oleracea L.) have high concentrations of lutein and β-carotene carotenoids. The objectives of this study were to determine the effects of different growing air temperatures on plant biomass production and the accumulation of elemental nutrients, lutein, β-carotene, and chlorophyll pigments in the leaves of kale and spinach. Plants were grown in nutrient solutions in growth chambers at air temperatures of 15, 20, 25, and 30 °C for `Winterbor' kale and 10, 15, 20, and 25 °C for `Melody' spinach. Maximum tissue lutein and β-carotene concentration occurred at 30 °C for kale and 10 °C for spinach. Highest carotenoid accumulations were 16.1 and 11.2 mg/100 g fresh mass for lutein and 13.0 and 10.9 mg/100 g fresh mass for β-carotene for the kale and spinach, respectively. Lutein and β-carotene concentration increased linearly with increasing air temperatures for kale, but the same pigments showed a linear decrease in concentration for increasing air temperatures for spinach. Quantifying the effects of air temperature on carotenoid accumulation in kale and spinach, expressed on a fresh mass basis, is important for growers producing these crops for fresh markets.

Free access

Dean A. Kopsell, David E. Kopsell, Mark G. Lefsrud, Joanne Curran-Celentano, and Laura E. Dukach

Green leafy vegetables are important sources of dietary carotenoids, and members of Brassica oleracea L. var. acephala rank highest for reported levels of lutein and β-carotene. Twenty-three leafy B. oleracea cultigens were field grown under similar fertility over two separate years and evaluated for leaf lutein and β-carotene accumulation. Choice of B. oleracea cultigen and year significantly affected carotenoid levels. Lutein concentrations ranged from a high of 13.43 mg per 100 g fresh weight (FW) for B. oleracea var. acephala `Toscano' to a low of 4.84 mg/100 g FW for B. oleracea var. acephala 343-93G1. β-carotene accumulations ranged from a high of 10.00 mg/100 g FW for B. oleracea var. acephala `Toscano' to a low of 3.82 mg/100 g FW for B. oleracea var. acephala 30343-93G1. Carotenoid concentrations were significantly higher in year 2 than in year 1, but rank order among the cultigens for both lutein and ß-carotene did not change between the years. During each year, there were high correlations between leaf carotenoid and chlorophyll pigments. Under similar growing conditions, choice of B. oleracea cultigen will influence carotenoid accumulation, and this may affect the health benefits of consuming these leafy green vegetable crops.

Free access

Cary Pirone, Jodie V. Johnson, J. Martin E. Quirke, Horacio A. Priestap, and David Lee

, a close relative of S. reginae ( Pirone et al., 2009 ). Bilirubin was previously known in the animal kingdom where it is produced as a breakdown product of heme. Preliminary high-performance liquid chromatography (HPLC) and ultraviolet

Free access

N. Georgelis, J.W. Scott, and E.A. Baldwin

Small-fruited cherry tomato accession PI 270248 (Lycopersicon esculentum Mill. var. cerasiforme Dunal) with high fruit sugars was crossed to large-fruited inbred line Fla.7833-1-1-1 (7833) that had normal (low) fruit sugar. Sugars in the F2 were positively correlated with soluble solids, glucose, fructose, pH, and titratable acidity, and inversely correlated with fruit size. Earliness was not significantly correlated with sugars but was negatively correlated with fruit size. Thus, the lack of a sugar-earliness correlation indirectly indicates a trend for early tomato plants to be lower in sugars than later maturing plants. Sugars were not correlated with yield or pedicel type. Fruit from indeterminate plants had significantly more sugars than from determinate plants. Six random amplified polymorphic DNA (RAPD) markers linked to high sugars were found, five dominant (OPAE 4, UBC 731, UBC 744, UBC 489, UBC 290) and one co-dominant (UBC 269). Five of the markers were also linked to small fruit size and one of these also was linked to low yield (UBC 290). The sixth marker (UBC 269) was linked to indeterminate plant habit. UBC 731, UBC 489, and possibly OPAE 4 were in one linkage group, while UBC 744 and UBC 290 were in another linkage group. Combinations of all the markers together explained 35% of the sugar variation in the F2 grown in Spring 2002.

Free access

Dean A. Kopsell and William M. Randle

Four cultivars of onion (Allium cepa L. `Primavera', `Granex 33', `Pegasus', and `Sweet Success') were grown to maturity in modified nutrient solutions with or without 2.0 mg·L-1 Na2 SeO4 (1.51 mg·L-1 SeO4 -2). Selenium did not affect total flavor precursor content (ACSO) in `Granex 33', `Pegasus', and `Sweet Success'. However, Se affected several individual ACSOs and precursor intermediates. Selenium decreased γ-L-glutamyl-S-(1-propenyl)-L-cysteine sulfoxide and trans(+)-S-(1-propenyl)-L-cysteine sulfoxide content in all four cultivars. (+)-S-Methyl-L-cysteine sulfoxide content was higher while (+)-S-propyl-L-cysteine sulfoxide content was lower with the added Se for two cultivars. Selenium lowered total bulb S content in all cultivars, and increased the percentage of total S accumulated as SO4 -2 in three cultivars. The effect of Se on the flavor pathway was similar to that found when onions were grown under low S-concentrations. Flavor changes can be expected when onions are grown in a high Se environment, however, specific changes may be cultivar dependent.

Free access

Carolyn E. Lister, Jane E. Lancaster, and John R.L. Walker

We thank K. Sutton for the HPLC analysis. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

Free access

David E. Kopsell, William M. Randle, and Mark A. Eiteman

Onion (Allium cepa L.) pungency changes during storage. To better understand these flavor changes, seven onion cultivars representing different storage duration, photoperiodic requirement, and flavor intensity were greenhouse grown and the bulbs stored for 3 or 6 months at 5±3 °C, 0.8 to 1.1 kPa vapor pressure deficit. Bulbs were evaluated using high-pressure liquid chromatography quantification for changes in S-alk(en)yl cysteine sulfoxide (ACSO) flavor precursors and γ-glutamyl peptide (γ-GP) biosynthetic intermediates before storage and monthly thereafter. Before and during storage, cultivars differed in total ACSO, (+) S-methyl-L-cysteine sulfoxide (MCSO), trans-(+)-S-(1-propenyl)-L-cysteine sulfoxide (PRENCSO), (+) propyl-L-cysteine sulfoxide (PCSO), S-2 carboxypropyl glutathione (2-CARB), and γ-L-glutamyl-S-(1-propenyl)-L-cysteine sulfoxide (γGPECSO) concentration. During storage MCSO generally decreased while PRENCSO increased in concentration for most cultivars. The linear increase in PRENCSO concentration during storage was accompanied by a linear decrease in γGPECSO concentration. While not measured in this study, these trends indicate γ-glutamyl transpeptidase activity throughout bulb storage. γ-Glutamyl transpeptidase was previously reported to be active only in the later stages of bulb storage or during bulb sprouting. Changes in ACSO and γ-GP compounds during storage did not follow previously reported changes during storage for enzymatically formed pyruvic acid (EPY) for these cultivars. To better understand what causes flavor changes in onions during storage, future investigations should include analysis of the enzymes involved in flavor development and ACSO hydrolysis products.

Free access

William M. Randle, Jane E. Lancaster, Martin L. Shaw, Kevin H. Sutton, Rob L. Hay, and Mark L. Bussard

Three onion (Allium cepa L.) cultivars were grown to maturity at five S fertility levels and analyzed for S-alk(en)yl-L-cysteine sulfoxide (ACSO) flavor precursors, γ-glutamyl peptide (γ-GP) intermediates, bulb S, pyruvic acid, and soluble solids content. ACSO concentration and composition changed with S fertility, and the response was cultivar dependent. At S treatments that induced S deficiency symptoms during active bulbing, (+)S-methyl-L-cysteine sulfoxide was the dominant flavor precursor, and the flavor pathway was a strong sink for available S. As S fertility increased to luxuriant levels, trans(+)-S-(1-propenyl)-L-cysteine sulfoxide (PRENCSO) became the dominant ACSO. (+)S-propyl-L-cysteine sulfoxide was found in low concentration relative to total ACSO at all S fertility treatments. With low S fertility, S rapidly was metabolized and low γ-GP concentrations were detected. As S fertility increased, γ-GP increased, especially γ-L-glutamyl-S-(1-propenyl)-L-cysteine sulfoxide, the penultimate compound leading to ACSO synthesis. Nearly 95% of the total bulb S could be accounted for in the measured S compounds at low S fertility. However, at the highest S treatment, only 40 % of the total bulb S could be attributed to the ACSO and γ-GP, indicating that other S compounds were significant S reservoirs in onions. Concentrations of enzymatically produced pyruvic acid (EPY) were most closely related to PRENCSO concentrations. Understanding the dynamics of flavor accumulation in onion and other vegetable Alliums will become increasing important as the food and phytomedicinal industries move toward greater product standardization and characterization.